Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-13T12:48:06.899Z Has data issue: false hasContentIssue false

Defect Equilibration in Amorphous Silicon Films Submitted to High Intensity Illumination

Published online by Cambridge University Press:  10 February 2011

C. Godet
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, (UPR 0258 CNRS) Ecole Polytechnique, 91128 Palaiseau-Cedex (France), godet@poly.polytechnique.fr
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, (UPR 0258 CNRS) Ecole Polytechnique, 91128 Palaiseau-Cedex (France), godet@poly.polytechnique.fr
Get access

Abstract

In plasma-deposited a-Si:H films, the increase of the metastable defect density produced by high-intensity illumination usually follows a stretched-exponential time-dependence, with a characteristic time τSE and a steady-state value Nss. For a wide range of deposition conditions, we have observed that both parameters depend on the material properties. The strong correlation between Nss and the monohydride [SiH]2000 density, reported previously, has been interpreted as due to the trapping of metastable H atoms at specific sites.

In this study of the kinetics of defect equilibration under high-intensity illumination, we find two groups of a-Si:H films with fast and slow kinetics, respectively. These two groups display a very different dependence of the defect creation rate as a function of the optical gap. For the fast kinetics films, we emphasize the critical influence of the Urbach energy Eu deduced from the exponential optical absorption edge (1/τSE increases as a function of Eu). The slow kinetics films are characterized by a high nanovoid density evidenced by their SiHx infrared signature at 2090 cm-1. The results are discussed in relation to the medium-range H motion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stutzmann, M., Phil. Mag. B 56, 63 (1987).Google Scholar
2. Wu, Z.Y., Siefert, J.M. and Equer, B., J. Non-Cryst. Solids 137&138, 227 (1991).Google Scholar
3. Meaudre, R. and Meaudre, M., Phys. Rev. B 45, 12134 (1992).Google Scholar
4. Vignoli, S., Meaudre, R. and Meaudre, M., J. Non-Cryst. Solids (1996) to appear.Google Scholar
5. Graeff, C.F.O., Buhleier, R. and Stutzmann, M., Appl. Phys. Lett. 62, 3001 (1993).Google Scholar
6. Darwich, R., Cabarrocas, P. Roca i, Vallon, S., Ossikovski, R., Morin, P. and Zellama, K., Phil. Mag. B 72, 363 (1995).Google Scholar
7. Bellissent, R., J. Non-Cryst. Solids 97&98, 329 (1987).Google Scholar
8. Greim, O., Weber, J., Baer, Y. and Kroll, U., Phys. Rev. B 50, 10644 (1994).Google Scholar
9. Hari, P., Taylor, P.C. and Street, R.A., Mat. Res. Soc. Symp. Vol.336, 329 (1994).Google Scholar
10. Street, R.A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
11. Street, R.A., Physica B 170, 69 (1990).Google Scholar
12. Morin, P. and Cabarrocas, P. Roca i, Mat. Res. Soc. Vol.336, 281 (1994).Google Scholar
13. Cabarrocas, P. Roca i, Chévrier, J.B., Huc, J., Lloret, A., Parey, J.Y. and Schmitt, J.P.M., J. Vac. Sci. Technol. A9, 2331 (1991).Google Scholar
14. Morin, P., Godet, C., Equer, B. and Cabarrocas, P. Roca i, 12th E.C. Photovoltaic Solar Energy Conference Proceedings, editors Hill, R., Palz, W. and Helm, P., Stephens and Associates (Bedford UK, 1994), p. 687.Google Scholar
15. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A and Maley, N., Phys. Rev. B 45, 13367 (1992).Google Scholar
16. Godet, C., Morin, P. and Cabarrocas, P. Roca i, J. Non-Cryst. Solids (1996) to appear.Google Scholar
17. Van de Walle, C.G., Physica B 170, 21 (1990).Google Scholar
18. Nickel, N.H. and Jackson, W.B., Phys. Rev. B 51, 4872 (1995).Google Scholar
19. Schumm, G., Abel, C.D. and Bauer, G.H., Mat. Res. Soc. Vol.258, 505 (1992).Google Scholar
20. Unold, T., Mat. Res. Soc. Vol.336, 287 (1994).Google Scholar
21. Irrera, F., J. Appl. Phys. 75, 1396 (1994).Google Scholar
22. Branz, H., Asher, S., Nelson, B.P. and Kemp, M., J. Non-Cryst. Solids 164–166, 269 (1993).Google Scholar
23. Mitra, S., Shinar, R. and Shinar, J., Phys. Rev. B 42, 6746 (1990).Google Scholar
24. Cabarrocas, P. Roca i, Djebbour, Z., Kleider, J.P., Longeaud, C., Mencaraglia, D., Sib, J., Bouizem, Y., Théye, M.L., Sardin, G. and Stoquert, J.P., J. Phys. I, 2, 1979 (1992).Google Scholar
25. Zellama, K., Chahed, L., Sladek, P., Th~ye, M.L., Bardeleben, J.H. Von and Cabarrocas, P. Roca i, Phys. Rev. B 53, 3804 (1996).Google Scholar