Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-17T02:37:27.143Z Has data issue: false hasContentIssue false

Defect Structure of the Mixed-Conducting Sr-Fe-Co-O System

Published online by Cambridge University Press:  15 February 2011

B. Ma
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
U. Balachandran
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
C.-C. Chao
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
J.-H. Park
Affiliation:
Energy Technology Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Electrical conductivity of the mixed-conducting Sr-Fe-Co-O system was investigated at elevated temperatures and various oxygen partial pressures (pO2). The system exhibits not only high combined electrical and oxygen ionic conductivities but also structural stability in both oxidizing and reducing environments. The conductivity of SrFeCo0.5Ox increases with increasing temperature and increasing pO2, within our experimental pO2 range (1 ≥ pO2 ≥ 1O-18 atm). p-type conduction behavior was observed. The activation energy of which increases with decreasing pO2. A model of the defect chemistry in the Sr-Fe-Co-O system is proposed. The pO2-dependent conducting behavior can be understood by considering the trivalent-to-divalent transition of the transition metal ions in the system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Balachandran, U., Dusek, J. T., Sweeney, S. M., Poeppel, R. B., Mieville, R. L., Maiya, P. S., Kleefisch, M. S., Pei, S., Kobylinski, T. P., Udovich, C. A., and Bose, A. C., Am. Ceram. Soc. Bull., 74, 71 (1995).Google Scholar
2. Ma, B., Park, J.-H., Segre, C. U., and Balachandran, U., Mater. Res. Soc. Symp. Proc., 393, 49 (1995).Google Scholar
3. Teraoka, Y., Zhang, H. M., Furukawa, S., and Yamozoe, N., Chem. Lett., 1985. 1743.Google Scholar
4. Teraoka, Y., Nobunaga, T., and Yamazoe, N., Chem. Lett., 1988. 503.Google Scholar
5. Balachandran, U., Morissette, S. L., Picciolo, J. J., Dusek, J. T., Poeppel, R. B., Pei, S., Kleefisch, M. S., Mieville, R. L., Kobylinski, T. P., and Udovich, C. A., Proc. Int. Gas Research Conf., edited by Thompson, H. A., (Government Institutes, Inc., Rockville, MD, 1992), p. 565573.Google Scholar
6. Mazanec, T. J., Cable, T. L., and Frye, J. G. Jr, Solid State Ionics, 111, 53 (1992).Google Scholar
7. Bose, A. C., Stigel, J. G., and Srivastava, R. D., “Gas to Liquids Research Program of the U.S. Department of Energy: Programmatic Overview,” paper presented at the Symp. on Alternative Routes for the Production of Fuels, Am Chem. Soc. National Meeting, Washington, DC, Aug. 2126, 1994.Google Scholar
8. Balachandran, U., Morissette, S. L., Dusek, J. T., Mieville, R. L., Poeppel, R. B., Kleefisch, M. S., Pei, S., Kobylinski, T. P., and Udovich, C. A., Proc. Coal Liquefaction and Gas Conversion Contractors Review Conf, edited by Rogers, S. et al. , (U.S. Dept. of Energy, Pittsburgh Energy Technology Center, Pittsburgh, PA, 1993), Vol. 1, pp. 138160.Google Scholar
9. Ma, B., Balachandran, U., Park, J.-H., and Segre, C. U., Solid State Ionics, 83, 65 (1996).Google Scholar
10. Ishigaki, T., Yamauchi, S., Kishio, K., Mizusaki, J., and Fueki, K., Solid, J. State Chem., 73, 179 (1988).Google Scholar
11. Nisancioglu, K. and Gür, T. M., Solid State Ionics, 72, 199 (1994).Google Scholar
12. Ma, B., Balachandran, U., Park, J.-H., and Segre, C. U., J. Electrochem. Soc., 143, 1736 (1996).Google Scholar