Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T01:24:46.528Z Has data issue: false hasContentIssue false

Deformation and Failure of Nanostructured Materials with Bimodal Grains

Published online by Cambridge University Press:  15 March 2011

R.Q. Ye
Affiliation:
Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616
B.Q. Han
Affiliation:
Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616
E.J. Lavernia*
Affiliation:
Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616
*
Corresponding author, Email: lavernia@ucdavis.edu
Get access

Abstract

The low ductility of nanostructured materials is attributed to the deficit of dislocation activity in the nanometer range. Recent scientific interest in nanostructured materials stems from reports of alterative combinations of mechanical properties, although a low ductility is typically reported. One promising approach based on the concept of multiple length scales is illustrated by a “bimodal” microstructure, i.e. containing a mixture of nanostructured and coarse grains. The present work reports a numerical study of the tensile deformation and fracture of a nanostructured Al alloy with a bimodal microstructure. In the theoretical framework used in the present study, the elastic-plastic behavior and deformation processes are approximated by Ramberg-Osgood formula and finite element method, respectively. The numerical results are found to be in a good agreement with the experimental behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koch, C.C., Nanostructured Materials: Processing, Properties and Potential Applications. Noyes Publications (William Andrew Publishing), Norwich, NY, 2002.Google Scholar
2. Koch, C.C., Morris, D.G., Lu, K. and Inoue, A., MRS Bulletin February, 54 (1999).Google Scholar
3. Han, B.Q., Mohamed, F.A. and Lavernia, E.J., J. Mater. Sci. 38, 3319 (2003).Google Scholar
4. Tellkamp, V.L., Melmed, A. and Lavernia, E.J., Metall. Mater. Trans. 32A, 2335 (2001).Google Scholar
5. Semiatin, S.L., Jata, K.V., Uchic, M.D. et al. , Scri. mater. 44, 395 (2001).Google Scholar
6. Hayes, R.W., Rodriguez, R. and Lavernia, E.J., Acta mater. 49, 4055 (2001).Google Scholar
7. Han, B.Q., Lee, Z., Nutt, S.R. et al. , Metall. Mater. Trans. A 34A, 603 (2003).Google Scholar
8. Witkin, D., Lee, Z., Rodriguez, R. et al. , Scri. mater. 49, 297 (2003).Google Scholar
9. Giessen, E. Van der and Needleman, A., Annu. Rev. Mater. Res., 32, 141 (2002).Google Scholar
10. Schmauder, S., Annu. Rev. Mater. Res., 32, 437 (2002).Google Scholar
11. Radjai, F., Wolf, D.E., Jean, M. et al. , Phys. Rev. Lett., 80, 61 (1998).Google Scholar
12. Gerberich, W.W., Jungk, J.M., Li, M. et al. , Int. J. Fract., 119/120, 387 (2003).Google Scholar
13. Wei, Y.J. and Anand, L., J. Mech. Phys. Solids, submitted (2003).Google Scholar
14. Ramberg, W. and Osgood, W.R., NACA TN 902, 1943.Google Scholar
15. Lubliner, J., Plasticity Theory, Macmillan Publishing Co., New York (1990).Google Scholar
16. Bao, G., Hutchinson, J.W. and McMeeking, R.M., Acta Metall Mater., 39, 1871 (1991).Google Scholar
17. Shen, Y.-L., Finot, M., Needleman, A. et al. , Acta Metall Mater., 42, 77 (1994).Google Scholar
18. Mammoli, A.A. and Bush, M.B., Acta Metall Mater., 43, 3743 (1995).Google Scholar
19. Leggoe, J.W., Hu, X.Z. and Bush, M.B., Eng. Fract. Mech., 53, 873 (1996).Google Scholar
20. Kiser, M.K., Zok, F.W. and Wilkinson, D.S., Acta Metall Mater., 44, 3465 (1996).Google Scholar
21. Wilkinson, D.S., Maire, E. and Embury, J.D., Mater.Sci.Eng., A233, 144 (1997).Google Scholar
22. Farrissey, L., Schmauder, S., Dong, M. et al. , Comp. Mater. Sci., 15, 1 (1999).Google Scholar
23. Soppa, E., Schmauder, S., Fischer, G. et al. , Comp. Mater. Sci., 16, 323 (1999).Google Scholar
24. Estevez, R., Maire, E., Franciosi, P. et al. , Eur. J. Mech. A/Solids, 18, 785 (1999).Google Scholar
25. Wilkinson, D. S., Pompe, W. and Oeschner, M., Prog. Mater. Sci., 46, 379 (2001).Google Scholar