Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T05:09:01.276Z Has data issue: false hasContentIssue false

Dendritic and Multipodal Liquid-Crystalline Materials based on Silsesquioxane and Siloxane Cores

Published online by Cambridge University Press:  01 February 2011

Georg H. Mehl
Affiliation:
Department of Chemistry, Liquid Crystals and Advanced Materials Group, University of Hull, Hull HU6 7RX, Great Britain
Ralf Elsäβer
Affiliation:
Department of Chemistry, Liquid Crystals and Advanced Materials Group, University of Hull, Hull HU6 7RX, Great Britain
Keith J. Shepperson
Affiliation:
Department of Chemistry, Liquid Crystals and Advanced Materials Group, University of Hull, Hull HU6 7RX, Great Britain
Adam Thornton
Affiliation:
Department of Chemistry, Liquid Crystals and Advanced Materials Group, University of Hull, Hull HU6 7RX, Great Britain
John W. Goodby
Affiliation:
Department of Chemistry, Liquid Crystals and Advanced Materials Group, University of Hull, Hull HU6 7RX, Great Britain
Get access

Abstract

In recent years great advances have been made in the synthesis of organic-inorganic hybrid materials, whether they are oligomeric, multipodal, polymeric or dendritic in structure. Of particular interest are liquid-crystalline systems, as the control of the soft self-assembly behaviour of these systems allows for the addressing of the macroscopic properties of these materials.

The investigations of silsesquioxane and siloxane cores decorated with suitable organic groups of linear and branched structures leading to liquid-crystalline phase behaviour is presented. The structural and chemical features which govern the phase behaviour will be discussed. Important features are the size, geometry, structure and flexibility of the inorganic core, the flexibility, branching and length of the spacer linking inorganic cores and the organic groups, which promote liquid-crystalline phase behaviour. The effects of a variety of mesogenic structures on the liquid-crystalline phase behaviour and stability range will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] a) Baars, M. W. P. L., Söntjens, S. H. M., Fischer, H. M., Peerlings, H. W. J., Meijer, E. W., Chem. Eur. J., 1998,, 4, 2456;Google Scholar
b) Lorenz, K., Holter, D., Stühn, B., Mühlhaupt, R., Frey, H., Adv. Mat., 1996,, 8, 414;Google Scholar
c) Ponomarenko, S. A., Rebrov, E. A., Bobrovsky, A. Y., Boiko, N. I., Muzafarov, A. M., Shibaev, V. P., Liq. Cryst., 1996,, 21, 1.Google Scholar
[2] a) Richardson, R. M., Ponomarenko, S. A., Boiko, N. I., Shibaev, V. P., Liq. Cryst. 1999,, 26, 1;Google Scholar
b) Percec, V., Kawasumi, M., Macromolecule., 1994,, 27, 4441;Google Scholar
b) Cameron, J. H., Facher, A., Lattermann, G., Diele, S., Adv. Mater., 1997,, 9, 398.Google Scholar
[3] a) Ibn-Elhaj, M., Coles, H. J., Gouillon, D. and Skoulios, A., J. Phys. (Paris) I., 1993,, 3, 1807;Google Scholar
b) Date, R. W., Imrie, C. T., Luckhurst, G. R., Seddon, J. M., Liq. Cryst., 1992,, 12, 203;Google Scholar
c) Li, M.H., Detre, L., Cluzeau, P., Isaert, N, Nguyen, H.-T., Liq. Cryst., 1998,, 24, 347;Google Scholar
d) Stebani, U., Lattermann, , Wittenberg, N., Festag, R., Wendorff, J.-H., Adv. Mater., 1994,, 6, 572;Google Scholar
e) Chen, S.-H., Mastrangelo, J. J. C., Shi, H., Bashir-Hashemi, A., Li, J., Gelber, N., Macromolecule., 1995,, 28, 7775;Google Scholar
f) Eidenschink, R., Kreuzer, F. H., de Jeu, W. J., Liq. Cryst., 1990,, 8, 879;Google Scholar
h) Chuard, T., Deschenaux, R., Hirsch, A., Schönberger, H., Chem.Commun.,, 1999, 2103,Google Scholar
[4] a) Mehl, G. H., Goodby, J. W., Chem. Ber., 1996,, 129, 521;Google Scholar
b) Mehl, G. H., Goodby, J. W., Angew. Chem., 1996,, 108, 2791, Angew. Chem. Int. Ed, Engl., 1996. 35, 2641;Google Scholar
c) Mehl, G. H., Goodby, J. W., Chem. Commun., 1999, 13;Google Scholar
(d) Mehl, G. H., Saez, I. M, Appl. Organomet. Chem., 1999,, 13, 261.Google Scholar
[5] Finkelmann, H., Liquid Crystallinity in Polymers, Principles and Fundamental Properties, p. 315, (ed. Ciferri, A.) VCH, NY, 1992.Google Scholar
[6] a) Bassindale, A. R., Gentle, T. J., J. Organomet. Chem., 1996,, 521, 391;Google Scholar
b) Jaffrés, P. A., Morris, R. E., J. Chem. Soc. Dalton Trans., 1998, 2767;Google Scholar
Feher, F. J., Wyndham, K. D., Soulivong, D., Nguyen, F., J. Chem. Soc. Dalton Trans., 1999, 1491,.Google Scholar
[7] Karstedt, B. D., General Electrics, US-Patent (US-PS 3.814.730), 1974; [Chem. Abstr. 1974, 80, 16134j].Google Scholar
[8] a) Schmidbaur, H., Adlkofer, J., Chem. Ber., 1972,, 105, 1956;Google Scholar
b) Tacke, R., Linoh, H., Zilch, H., Wess, J., Moser, U., Mutschler, E., Lambrecht, G., Liebigs Ann. Chem.,, 1985, 2223;Google Scholar
c) Tacke, R., Reichel, D., Kopfgans, M., Jones, P. G., Mutschler, E., Gross, J., Hou, X, Waelbroek, M., Lambrecht, G., Organometallic., 1995,, 14, 251.Google Scholar
[9] a) Bras, W., Derbyshire, G. E., Bogg, D., Cooke, J., Elwell, M. J., Komanschek, B. U., Naylor, S., Ryan, A. J., Scienc., 1995,, 267, 996;Google Scholar
b) Ewing, D., Glew, M., Goodby, J. W., Haley, J. A., Kelly, S. M., Komanschek, B. U., Letellier, P., Mackenzie, G., Mehl, G. H., J. Mater. Chem., 1998,, 8, 871.Google Scholar
[10] McMillan, W. L., Phys. Rev‥, 1973,, 8, 1921.Google Scholar
[11] Wulf, A., Phys. Rev‥, 1975,, 11, 365.Google Scholar
[12] Kresge, C. T, Leonwicz, M. E., Roth, W. J., Vartuli, J. C., Beck, J. S., Natur., 1992,, 359, 710;Google Scholar
Attard, G. S., Glyde, J. C., Göltner, C. G., Natur., 1995,, 378, 366.Google Scholar
[13] Göltner, C. G., Angew. Chem. Int. Ed., 1999, 38, 3155;Google Scholar
Mc Grath, K. C., Dabbs, D. M., Yao, N., Aksay, I. A., Gruner, S. M., Scienc., 1997,, 277, 552.Google Scholar
[14] Miller, S. A., Kim, E., Gray, D. H., G, , Gin, L., Angew. Chem. Int. Ed., 1999,, 38, 3022.Google Scholar
[15] a) Sellinger, A., Weiss, P. M., Nguyen, A., Lu, Y., Assink, R. A., Gong, W., Brinker, C. F., Natur., 1998,, 394, 256;Google Scholar
b) Sellinger, A., Laine, R. M., Chu, V., Viney, C., J. Polym Sci. Part A. Polym. Chem., 1994,, 32, 3069.Google Scholar
[16] Tschierske, C., J. Mater. Chem., 1998, 8, 1485.Google Scholar
[17] Gray, G. W., Hill, J. S., Lacey, D., Mol. Cryst. Liq. Cryst., 1991,, 197, 43.Google Scholar
[18] Lee, M. S. K., Gray, G. W., Lacey, D., Toyne, K. J., Makromol. Chem. Rapid. Commun., 1989,, 10, 325.Google Scholar
[19] Elsäβer, R., Mehl, G. H., Goodby, J. W., Photinos, D. J., Chem. Commun.,, 2000, 851.Google Scholar
[20] Weissflog, W., Risse, J., Lose, D., Diele, S, Pelzl, G., Int. Liq. Cryst. Conf., Strasbourg, Fr, P4–58, 1998; W. Weissflog, priv. communication.Google Scholar
[21] Lecommandoux, S., Archard, M. F., Hardouin, F., Liq. Cryst., 1998,, 25, 85; and refs. therein.Google Scholar