Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-30T02:57:19.687Z Has data issue: false hasContentIssue false

Density Functional Based Tight Binding Study of C2 and CN Deposition On (100) Diamond Surface

Published online by Cambridge University Press:  21 March 2011

Michael Sternberg
Affiliation:
Universität Paderborn, Fachbereich Physik, Theoretische Physik, D-33098 Paderborn, Germany
Peter Zapol
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Thomas Frauenheim
Affiliation:
Universität Paderborn, Fachbereich Physik, Theoretische Physik, D-33098 Paderborn, Germany
John Carlisle
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Dieter M. Gruen
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Larry A. Curtiss
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

A density-functional based tight binding method was used to study elementary steps in the growth of ultrananocrystalline (UNCD) diamond. It was shown previously that C2 dimers are the dominant growth species in hydrogen-poor argon plasmas. Recent experimental evidence shows that nitrogen addition to the plasma profoundly changes the morphology of the UNCD film. CN species are believed to play a major role. Reactions of C2 and CN molecules with reconstructed diamond (100) surfaces were studied. A single CN prefers an end-on attachment to a surface atom on the unhydrided (100) surface with its C end down. It is shown how further C2 addition to the surface leads to CN-mediated diamond growth and how the CN species remain on top of the growing diamond layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruen, D. M., Liu, S., Krauss, A. R., Luo, J. and Pan, X., Appl. Phys. Lett., 64, 1502 (1994).Google Scholar
2. Gruen, D.M.. Annu. Rev. Mater. Sci., 29, 211–59, (1999).Google Scholar
3. Goyette, A.N., Lawler, J.E., Anderson, L.W., Gruen, D.M., McCauley, T.G., Zhou, D., and Krauss, A.R., J. Phys. D: App. Phys., 31, 1975 (1998).Google Scholar
4. Horner, D. A., Curtiss, L. A., and Gruen, D. M., Chem. Phys. Lett., 233, 243 (1995).Google Scholar
5. Redfern, P., Horner, D. A., Curtiss, L. A., and Gruen, D. M., J. Phys. Chem., 100, 11654 (1996).Google Scholar
6. Gruen, D. M., Redfern, P. C., Horner, D. A., Zapol, P., and Curtiss, L. A., J. Phys. Chem. B, 103, 5459 (1999).Google Scholar
7. Sternberg, M., Kaukonen, M., Nieminen, R. N., Frauenheim, Th., Phys. Rev. B, 63, 165414 (2001).Google Scholar
8. Harris, S. J. and Goodwin, D. G., J. Phys. Chem., 97, 23 (1993)Google Scholar
9. Porezag, D., Frauenheim, Th., Kohler, Th., Seifert, G., and Kaschner, R., Phys. Rev. B, 51, 12947 (1995).Google Scholar
10. Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, Th., Suhai, S., Seifert, G., Phys. Rev. B, 58, 7260 (1998).Google Scholar
11. Furthmüller, J., Hafner, J. and Kresse, G. Phys. Rev. B, 53, 7334 (1996).Google Scholar