Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T00:19:22.872Z Has data issue: false hasContentIssue false

Density Functional Calculations on the Metal-Polymer Interfaces

Published online by Cambridge University Press:  15 February 2011

A. Selmani
Affiliation:
Chemical Eng., C.P. 6079, Stat. A, Montréal, Qué, Canada, H3C 3A7
A. Ouhlal
Affiliation:
Eng. Physics, Ecole Polytechnique de Montréal, C.P. 6079, Stat. A, Montréal, Qué, Canada, H3C 3A7
A. Yelon
Affiliation:
Eng. Physics, Ecole Polytechnique de Montréal, C.P. 6079, Stat. A, Montréal, Qué, Canada, H3C 3A7
Get access

Abstract

Bonding of chromium to the polyimide, PMDA-ODA, surface is still subject to debate. In an attempt to clarify this problem, we have performed density functional theory calculations on a model molecule, phthalimide, which contains the most reactive functionalities of the polyimide PMDA part. Considering only the low spin case, we find that chromium bonds preferentially to the phenyl ring. However, when we release the spin polarisation and optimise the structure, we find that the absolute stable configuration is that of chromium in a quintet state at a carbonyl group. The energy difference is 0.30 eV. The complete optimised structures are determined. The infrared spectrum have been calculated for phthalimide and compared to experimental spectra. The agreement is excellent. A vibrational analysis for the Cr/phthalimide system, in both configurations (Cr on C=O and Cr on phenyl), in their stable spin states, is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Feit, E. D. and Wilkins, C.W. Jr., editors, “Polymer Materials for Electronic Applications”, ACS Symp.Ser. 180 (1982)Google Scholar
2. see Mittal, K.L., editor, “Polyimide: Synthesis, Characterisation and applications” Vols. 1 and 2, Plenum Press, New York, 1984 CrossRefGoogle Scholar
3.- Chou, N. J. and Tang, C.H., J.Vac.Sci.Technol. A2, 741 (1984) - J. L. Jordan, P.N. Sanda, J.F Morar, C.A. Kovac and A.Pollak, J.Vac.Sci.Technol.A4, 1046(1986) -N. J. Dinardo, J.E. Demuth and T.C. Clark, Chem.Phys.Lett., 121, 239 (1985) - N. J. Dinardo, J.E. Demuth and T.C. Clark, J.Vac.Sci.Technol. A4, 1050 (1986) -J. L. Jordan, C.A. Kovac, J.F. Morar and A. Pollak, Phys.Rev.B 36, 1367 (1987) -J. G. Clabes, M.J. Goldberg, A. Viehbeck, and C.A. Kovac, J. Vac. Sci.Technol. A6(3) 985 (1988) -D.S. Dunn and J.L. Grant, J.Vac.Sci.Technol. A7, 253 (1989)Google Scholar
4.-Haight, R., White, R.C., Silverman, B.D., and Ho, P.S., J. Vac. Sci.Technol. A6, 2188 (1988) -R.C. White, R. Haight, B.D. Silverman, and P.S. Ho, Appl. Phys. Lett. 51, 7 (1987) -J.W. Bartha, P.O. Hahn, F Legoues and P.S. Ho, J.Vac.Sci.Technol.A3,1390(1985) -B.D. Silverman, Macromolecules 22, 3768 (1989)CrossRefGoogle Scholar
5.-Salahub, D., Adv.Chem.Phys., 69, 447 (1987)Google Scholar
6. -Labanowski, J. K. and Andzelm, J. K. (editors). Density functional methods in chemistry. Spring-Verlag, New York, 1991.Google Scholar
7. St-Amant, A. and Salahub, D.R., Chem.Phys.Lett., 169,387 (1990)Google Scholar
8. St-Amant, A., Ph. D. Thesis, Université de Montréal, (1991)Google Scholar
9. Salahub, D.R., Fournier, R., Mlynarski, P., Papai, I., St-Amant, A. and Ushio, J., in Density Functional Methods in Chemistry, ed. by Iabanowski, and Andzelm, J.,(Springer, Berlin, 1991)Google Scholar
10. See for example, Papai, I., St-Amant, A., Ushio, J., and Salahub, D.R., Int.J.Quant.Chem. Quantum Chem. Symp. 24, 29 (1990), In Density Functional Methods in Chemistry, edited by J. Labanowski and J. Andzelm, (Springer, Berlin, 1991)CrossRefGoogle Scholar
11. Selmani, A. and Ouhlal, A., Chem.Phys.Lett. 191 (1992) 213 Google Scholar
12. quéré, A.M. Le, Xu, C. and Manceron, L., J.Phys.Chem. 95 (1991) 3031 Google Scholar
13. Ouhlal, A., Selmani, A., Yelon, A. and Andrews, M., Chem.Phys.Lett. 202, 51(1993)Google Scholar
14. Selmani, A., Ouhlal, A., Hliwa, M. and Yelon, A., Chem.Phys.Lett., 187, 29 (1991)CrossRefGoogle Scholar
15. Selmani, A., Elfeninat, F. and Hliwa, M., Chem.Phys.Lett.,201,416 (1993)Google Scholar
16. Ouhlal, A. and Selmani, A., to be publishedGoogle Scholar
17. Efner, H.F., Tevault, D.E., Fox, W.f. and Smadzewski, R.R. J.Organomt.Chem., 45, (1978) 146 Google Scholar
18. Andrews, M.P., Mattar, S.M. and Geoffrey, A.O., J.Phey.Chem., 90, (1986) 744 Google Scholar
19. The Aldrich Library of FT-IR Spectra, Edition 1,volume 2,p. 405A by Pouchert, C.J..Google Scholar
20. Ishida, H., Wellinghoff, S.T., Baer, E., and Koenig, J.L., Macromolecules, 13, 826 (1980)Google Scholar
21. Rossi, A.R., Sanda, P.N., Silverman, B.D. and Ho, P.S., Organometallics, 6, (1987) 826 CrossRefGoogle Scholar