Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T16:33:46.946Z Has data issue: false hasContentIssue false

Design of a New Taper for Light Coupling Between a Ridge Waveguide and a Photonic Crystal Waveguide

Published online by Cambridge University Press:  01 February 2011

Cécile Jamois
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany.
Torsten Geppert
Affiliation:
Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany. Nanophotonic Materials Group, Department of Physics, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany.
Ralf B. Wehrspohn
Affiliation:
Nanophotonic Materials Group, Department of Physics, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany.
Get access

Abstract

We propose the design of a new taper to improve light coupling between a photonic-crystal-based W1 waveguide and a ridge waveguide of similar width. The taper design is directly deduced from band structure calculations and allows an adiabatic mode conversion. The comparison between light propagation from the ridge waveguide through the W1 waveguide and through the taper, respectively, shows good improvement of the coupling efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. März, R., Burger, S., Golka, S., Forchel, A., Hermann, C., Jamois, C., Michaelis, D. and Wandel, K., “Planar High Index-Contrast Photonic Crystals for Telecom Applications“, Photonic Crystals: Advances in Design, Fabrication and Characterization, ed. Busch, K., Lölkes, S., Wehrspohn, R. and Föll, H., 308329 (Wiley, 2004) (in press).Google Scholar
2. Miyai, E., Okano, M., Mochizuki, M., and Noda, S., Appl. Phys. Lett. 81, 3729 (2002).Google Scholar
3. Moll, N. and Bona, G.-L., J. Appl. Phys. 93, 4986 (2003).Google Scholar
4. Qiu, M., Azizi, K., Karlsson, A., Swillo, M. and Jaskorzynska, B., Phys. Rev. B 64, 155113 (2001).Google Scholar
5. Johnson, S.G., Bienstman, P., Skorobogatiy, M.A., Ibanescu, M., Lidorikis, E., and Joannopoulos, J.D., Phys. Rev. E 66, 066608 (2002).Google Scholar
6. Andreani, L.C. and Agio, M., Appl. Phys. Lett. 82, 2011 (2003).Google Scholar
7. Jamois, C., Wehrspohn, R.B., Andreani, L.C., Hermann, C., Hess, O. and Gösele, U., Photonics and Nanostructures: Fundamentals and Applications 1, 1 (2003).Google Scholar