Skip to main content
×
Home

Designing Conducting Polymers with Genetic Algorithms

  • R. Giro (a1), M. Cyrillo (a1) and D.S. Galvão (a1)
Abstract
Abstract

We have developed a new methodology to design conducting polymers with pre-specified properties using genetic algorithms (GAs). The methodology combines GAs with the Negative Factor Counting (NFC) technique. NFC is a powerful technique to obtain the eigenvalues of large matrices without direct diagonalization.We present the results for a case study of polyanilines, one of the most important families of conducting polymers. The methodology proved to be able of generating automatic solutions for the problem of determining the optimum relative concentration for binary and ternary disordered polyaniline alloys exhibiting metallic properties. The methodology is completely general and can be used to design new classes of materials.

Copyright
References
Hide All
[1] For an overview of the area see for example, Handbook of Organic Conductive Molecules and Polymers, vols. 1–3, Nalwa H.S. (Ed.), John Wiley & Sons Ltd., New York (1997).
[2] Shirakawa H., Jovi E. J., MacDiarmid A. G., Chiang C. K. and Heeger A. J., J. Amer. Chem. Soc. 99, 578 (1977).
[3] See for instance, Proceedings of the International Conference on Science and Technology of Synthetic Metals, Synth. Met. 119–120 (2001).
[4] Dean P., Martin J. L., Proc. Roy. Soc. A259, 409 (1960).
[5] Ladik J., Seel M., Otto P. and Bakhshi A.K., Chem. Phys. 108, 203 (1986).
[6] Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning, New YorkAddison-Wesley Public Company (1989).
[7] Galvão D. S., Santos D. A. dos, Laks B., Melo C. P. de, and Caldas M. J., Phys. Rev. Lett. 63, 786 (1989).
[8] Lavarda F.C., Santos M.C. dos, Galvão D.S., and Laks B., Phys. Rev. Lett. 73, 1267 (1994).
[9] Holland J., Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann Arbor (1975).
[10] Forrest S., Science 261, 872 (1993).
[11] MacDiarmid A. G.. Chiang J. C., Richter A. F., and Epstein A. J., Synth. Met. 18, 285 (1987).
[12] Haupt R.L. and Haupt S.E., Practical Genetic Algorithms, John Wiley & Sons, Inc., New York (1998).
[13] Mitchell M., An Introduction to Genetic Algorithms, Cambridge, MIT Press (1996).
[14] Streitwieser A. Jr, Molecular Orbital Theory, Wiley, New York, (1961).
[15] Bell R.G., Dean P., Hibbins-Butler D. C., J. Phys. 3, 2111 (1970).
[16] Dean P., Rev. Mod. Phys., 44, 122 (1972).
[17] Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P., Numerical Recipes in Fortran: The Art of Scientific Computing, Vol. 1, 2nd edition - Cambridge University Press, p. 271, Cambridge (1992).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 41 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.