Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-07T06:52:55.710Z Has data issue: false hasContentIssue false

Detection of Thin Interfacial Layers by Picosecond Ultrasonics

Published online by Cambridge University Press:  25 February 2011

G. Tas
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
R. J. Stoner
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
H. J. Maris
Affiliation:
Department of Physics, Brown University, Providence, RI 02912
G. W. Rubloff
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY10598
G. S. Oehrlein
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY10598
J. M. Halbout
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY10598
Get access

Abstract

We report on experiments in which the picosecond ultrasonics technique is used to detect the existence of thin layers of CFx at the interface between a metal film (Al) and a silicon substrate. Acoustic vibrations are excited in the metal film when a picosecond light pulse is absorbed. The thickness of the CFx can be estimated from the rate at which these vibrations are damped out via transmission of sound into the silicon substrate through the CFx layer. We show that thin CFx layers can also be detected via their effect on the rate at which heat flows from the metal to the silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oehrlein, G. S., Phys. Today 39(10), 26 (1986).CrossRefGoogle Scholar
2. Oehrlein, G. S. and Lee, Y. H., J. Vac. Sci. Tech. 5, 1585 (1987).CrossRefGoogle Scholar
3. Oehrlein, G. S., Tromp, R. M., Tsang, J. C., Lee, Y. H. and Petrillo, E. J., J. Electrochem. Soc. 132, 1441 (1985).CrossRefGoogle Scholar
4. Oehrlein, G. S., Clabes, J. G. and Spiroto, P., J. Electrochem. Soc. 133, 1002 (1986).CrossRefGoogle Scholar
5.See for example Rokhlin, S. I., Hefets, M. and Rosen, M., J. Appl. Phys. 51, 3579 (1980).CrossRefGoogle Scholar
6. Thomsen, C., Grahn, H. T., Maris, H. J. and Tauc, J., Phys. Rev. B, 34, 4129 (1986).CrossRefGoogle Scholar
7. Zhu, T. C., Maris, H. J. and Tauc, J., Phys. Rev. B, 44, 4281 (1991).CrossRefGoogle Scholar
8. Sperati, C. A., in Polymer Handbook, edited by Brandrup, J. and Immergut, E. H., (NY Wiley, 1989), p. V/35.Google Scholar
9. Reich, L., Stivala, S. S., Elements of Polymer Degradation (McGraw-Hill Inc., New York, 1971), p. 294.Google Scholar
10. Clark, E. S., in Structures and Properties of Polymer Films, edited by Lenz, R. W. and Stein, R. S. (Plenum Press, New York, 1973), p. 267.CrossRefGoogle Scholar
11. Stoner, R., Young, D. A., Marls, H. J., Tauc, J. and Grahn, H. T., in Phonons 89, edited by Hunklinger, S., Ludwig, W. and Weiss, G. (World Scientific, Singapore, 1990), p. 1305.Google Scholar
12. Swartz, E. T. and Pohl, R. O., Rev. Mod. Phys. 61, 605 (1989).CrossRefGoogle Scholar