Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T14:18:31.806Z Has data issue: false hasContentIssue false

Determination Of The α-Al2O3(0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods

Published online by Cambridge University Press:  15 February 2011

P. Guenard
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, SP2M 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
G. Renaud
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, SP2M 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
A. Barbier
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale sur la Matière Condensée, SP2M 17, rue des Martyrs, 38054 Grenoble Cedex 9, France
M. Gautier-Soyer
Affiliation:
CEA/Saclay, Département de Recherche sur l'Etat Condensé, les Atomes et Molécules, SRSIM, 91191 Gif-sur-Yvette, France
Get access

Abstract

We have investigated the unreconstructed (0001) surface structure of sapphire (α-Al2O3) by Grazing Incidence X-ray Scattering. Modulations along the crystal truncation rods were analyzed in order to determine the chemical nature of the terminating plane, and the structural relaxations of the first few atomic planes below the surface. The most likely model yields a single Al layer termination with relaxations of the first four planes of -51%, +16%, -29% and +20% respectively. These results compare well with the most recent theoretical calculations on this surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tasker, P.W., Adv. Ceram. 10, 176 (1984).Google Scholar
2. Guo, J., Ellis, D.E., Lam, D.J., Phys. Rev. B 45, 13647 (1992).Google Scholar
3. Mackrodt, W.C., Davey, R.J., Black, S.N., Docherty, R., J. Cryst. Growth 80, 441 (1987).Google Scholar
4. Manassidis, I., Gillan, M.J., J. Am. Ceram. Soc. 77, 335 (1994); Surf. Sci. Lett. 285, L517 (1993).Google Scholar
5. Causk, M., Dovesi, R., Pisani, C., Roetti, C., Surf Sci. 215, 259 (1989).Google Scholar
6. Godin, T.J., LaFemina, J.P., Phys. Rev. B 49, 7691 (1994).Google Scholar
7. Robinson, I.K., Tweet, D.J., Rep. Prog. Phys. 55, 599 (1992).Google Scholar
8. Ndubuisi, G.C., Liu, J., Cowley, J.M., Mic. Res. Tech. 20, 439 (1992).Google Scholar
9. Gillet, E., Ealet, B., Surf. Sci. 273, 427 (1992).Google Scholar
10. Kirfel, A., Eichhom, K., Acta Cryst. A 46, 271 (1990).Google Scholar
11. Renaud, G., Villette, B., Vilfan, I., Bourret, A., Phys. Rev. Lett. 73, 1825 (1994).Google Scholar