Hostname: page-component-7dd5485656-2pp2p Total loading time: 0 Render date: 2025-10-28T22:21:34.842Z Has data issue: false hasContentIssue false

Determination of the Percentage of the Cubic and Hexagonal Phases in Gan with Nexafs

Published online by Cambridge University Press:  10 February 2011

M. Katsikini
Affiliation:
Aristotle University of Thessaloniki, Dept. of Physics, 54006 Thessaloniki, Greece Hahn-Meitner Institute (A S), Glienicker Str. 100, D-14109 Berlin, Germany
E. C. Paloura
Affiliation:
Aristotle University of Thessaloniki, Dept. of Physics, 54006 Thessaloniki, Greece
T. D. Moustakas
Affiliation:
Boston University, College of Engineering, Boston, MA 02215, USA.
E. Holub-Krappe
Affiliation:
Hahn-Meitner Institute (A S), Glienicker Str. 100, D-14109 Berlin, Germany
J. Antonopoulos
Affiliation:
Aristotle University of Thessaloniki, Dept. of Physics, 54006 Thessaloniki, Greece
Get access

Abstract

Angle resolved near edge X-ray absorption measurements (NEXAFS) are used to access the existence and concentration of the two allotropic phases, cubic (β-GaN) and hexagonal (α-GaN), that coexist in a mixed-phase GaN sample grown by ECR-MBE. The resonance intensities in the NEXAFS spectra from a pure cubic GaN sample are independent of the angle of incidence ϑ, while they have a characteristic angular dependence on cos2ϑ for the hexagonal material, i.e. I=A±Bcos2ϑ. From the values of A and B the bond orientations with respect to the surface normal are calculated. Furthermore, the NEXAFS resonances in a pure α- or β-GaN sample appear at characteristic energies which are independent of the angle of incidence ϑ. Contrary to that the NEXAFS resonances in the spectra from a mixed-phase GaN show a characteristic ϑ-dependent shift. On the basis of this finding, a method is proposed and applied for the determination of the fractions of the co-existing polytypes in a mixed-phase sample.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 1250 (1995).Google Scholar
2. Sakai, H., Koide, T., Suzuki, H., Yamaguchi, M., Yamasaki, S., Koike, M., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 34, L1429 (1995).Google Scholar
3. Lei, T., Fanciulli, M., Molnar, R. J., Moustakas, T. D., Graham, R. J. and Scanlon, J., Appl. Phys. Lett. 59, 944 (1991).Google Scholar
4. Cheng, T. S., Jenkins, L. C., Hooper, S. E., Foxon, C. T., Orton, J. W. and Lacklison, D. E., Appl. Phys. Lett. 66, 1509 (1995).Google Scholar
5. Fuggle, J. C. and Inglesfield, J. E., Unoccupied electronic states : Fundamentals for XANES. EELS, IPS and BLS (Springer Verlag, Berlin 1992) and references therein.Google Scholar
6. Lambrecht, W. R. L., Segall, B., Rife, J., Hunter, W. R. and Wickenden, D. K., Phys. Rev. B, 51, 13516 (1995)Google Scholar
7. Stoehr, J., NEXAFS Spectroscopy (Springer-Verlag, Berlin, 1992) and references therein.Google Scholar
8. Katsikini, M., Paloura, E. C., Kalomiros, J., Bressler, P., Moustakas, T. D., Proc. 23d Int. Conf. on the Physics of Semiconductors, Berlin, July 1996 (in press).Google Scholar
9. Katsikini, M., Paloura, E. C., Cheng, T. S. and Foxon, C. T., Proc. 9th Int. Conf. on X-ray absorption fine structure, Grenoble, August 1996 (to be published in J. de Physique).Google Scholar
10. Katsikini, M., Paloura, E. C., Moustakas, T. D., Appl. Phys. Lett. 69 (in press)Google Scholar
11. Moustakas, T. D., Lei, T. and Molnar, R. J., Physica B 185, 36 (1993).Google Scholar
12. Lei, T., Moustakas, T. D., Graham, R. J., He, Y., Berkowitz, S. J., J. Appl. Phys. 71, 4933 (1992).Google Scholar
13. Basu, S. N., Lei, T. and Moustakas, T. D., J. Mater. Res. 9, 2370 (1994).Google Scholar
14. Lei, T., Ludwig, K. F., Moustakas, T. D., J. Appl. Phys. 74, 4430 (1993).Google Scholar
15. Berkowitz, J. in Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic Press, New York 1979), p. 56.Google Scholar
16. Zallen, R. in Band theory and transport properties, Vol. 1, Ed. Paul, W. (North-Holland, New York, 1982) p. 19.Google Scholar
17. Hiramastu, K., Detchprohm, T., Akasaki, I., Jpn. J. Appl. Phys. 32, 1528 (1993).Google Scholar