Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T12:06:33.379Z Has data issue: false hasContentIssue false

Development of a High-Throughput Impedance Spectroscopy Screening System (HT-IS) for Characterisation of Novel Nanoscaled Gas Sensing Materials

Published online by Cambridge University Press:  15 February 2011

Daniel Sanders
Affiliation:
RWTH Aachen University, Institute of Inorganic Chemistry, 52056 Aachen, Germany
Maike Siemons
Affiliation:
RWTH Aachen University, Institute of Inorganic Chemistry, 52056 Aachen, Germany
Tobias Koplin
Affiliation:
RWTH Aachen University, Institute of Inorganic Chemistry, 52056 Aachen, Germany
Ulrich Simon
Affiliation:
RWTH Aachen University, Institute of Inorganic Chemistry, 52056 Aachen, Germany
Get access

Abstract

A high-throughput work flow for rapid synthesis and testing of metal oxide nanoparticles for the discovery of new gas sensors of improved sensitivity and selectivity has been developed. The material libraries consist of nanoscaled metal oxide particles which are obtained either from pyrolysis of appropriate precursors or from polyol mediated synthesis. The design of a multielectrode array with 8x8 interdigital electrodes allows efficient and automated pipetting robot assisted sample preparation and material deposition. For characterisation of the sensor arrays high throughput impedance spectroscopy has been used. Test gas sequences and sensor temperatures can be varied. As an example, the properties of an In2O3-based library are introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sullivan, M.G., Utomo, H., Fagan, P.J., Ward, M.D., Anal. Chem., 71 (1999), 4369.Google Scholar
2. Warren, C. J., Haushalter, R. C., Matsiev, L., US 6,187,164 B1 (2001).Google Scholar
3. Nishii, J., Hossain, F. M., Aita, T., Ohmaki, Y., Kishimoto, S., Fukumura, T.,Ohno, Y., Ohno, H., Takagi, S., Saikusa, K., Ohkubo, I., Ohtomo, A., Matsukura, F., Koinuma, H., Kawasaki, M., Jpn. J. Appl. Phys., 42 (2003), 347.Google Scholar
4. Matsumoto, Y., Murakami, M., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Nakajima, K., Chikyow, T., Koinuma, H., Appl. Surf. Sci., 189 (2002), 344.Google Scholar
5. Chang, H., Xiang, X.-D., Integrated Ferroelectrics, 28 (2000), 113.Google Scholar
6. Simon, U., Sanders, D., Jockel, J., Heppel, C., Brinz, T., J. Comb. Chem., 4 (2002), 511 Google Scholar
7. Frantzen, A., Scheidtmann, J., Frenzer, G., Maier, W.F., Jockel, J., Brinz, T., Sanders, D., Simon, U., Angew. Chem. Intern. Ed. 43 (2004), 752.Google Scholar
8. Simon, U., Sanders, D., Jockel, J., Brinz, T.,. Comb. Chem., accepted.Google Scholar
9. Siemons, M., Weirich, Th., Mayer, J., Simon, U., Anorg, Z.. Allg. Chem., 640 (2004), 20832089.Google Scholar
10. Frantzen, A., Sanders, D., Scheidtmann, J., Simon, U., Maier, W. F., QSAR Comb. Sci. (2005), 2228.Google Scholar