Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T01:01:01.678Z Has data issue: false hasContentIssue false

Development of Hydrogen Absorbing Alloy with High Dissociation Pressure

Published online by Cambridge University Press:  15 February 2011

Yoshitsugu Kojima
Affiliation:
Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan ……
Yasuaki Kawai
Affiliation:
Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan ……
Shin-Ichi Towata
Affiliation:
Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan ……
Tomoya Matsunaga
Affiliation:
Material Engineering Div.3, Toyota Motor Corporation, Susono, Shizuoka, Japan
Tamio Shinozawa
Affiliation:
Material Engineering Div.3, Toyota Motor Corporation, Susono, Shizuoka, Japan
Masahiko Kimbara
Affiliation:
Corporate Technical Center, Toyota Industries Corporation, Obu, Aichi, Japan
Get access

Abstract

The effective hydrogen capacity of TixCr2-yMny [≫X λ1.1 (1.08≤0x≤1.16), y λ1.0 (0.96≤y≤1.08)rsqb; exhibited the maximum value of 1.8 wt% in the pressure range of 33 MPa and 0.1 MPa at 296K (dissociation pressure: 5-11 MPa), and the alloy provided over 10% more capacity than conventional Ti-Cr-Mn (Ti1.2CrMn: 1.6 wt%, Ti1.2Cr1.9Mn0.1: 1.3 wt%). At the low temperature of 233 K, the alloy absorbed 2.0 wt% of hydrogen and the hydrogen desorption capacity at 0.1 MPa was 1.6 wt%. The dissociation pressure decreased with the Ti and the Mn contents and was explained by the function of the bulk modulus and the cell volume. According to the van't Hoff plots, the standard enthalpy differences (heat of formation) of the Ti1.16Cr0.92Mn1.08 and Ti1.08Cr1.04Mn0.96 hydrides were -21 and -22 kJ/molH2, respectively. These absolute values were about 10 kJ/molH2 smaller than those of LaNi5 and Ti-Cr-V. The alloy had sufficient hydriding and dehydriding kinetics. In the pressure range of 33 MPa and 0.1 MPa at 296 K, the alloy absorbed and desorbed 1.8 wt% of hydrogen in 60 sec and 300 sec, respectively. The hydrogen capacity changed gradually over many cycles and that after 1000 cycles was 94 % of the initial capacity. Thus Ti1.1CrMn can be utilized for a high- pressure MH tank which contains a hydrogen absorbing alloy with high dissociation pressure and compressed hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schlapbach, L. and Züttel, A., Nature, 353, 353 (2001).Google Scholar
2 , A. C., , K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., Nature, 377, 377 (1997).Google Scholar
3 Chahine, R. and Bose, T. K., Int. J. Hydrogen Energy, 19, 161 (1994).Google Scholar
4 Kojima, Y. and Suzuki, N., Appl. Phys. Lett., 4113, 4113 (2004).Google Scholar
5 Sandrock, G., Final Report, Contract N00014-97-M-0001, SunaTech, Inc., Ringwood, NJ, July 24 (1997).Google Scholar
6 Tamura, T., Tominaga, Y., Matumoto, K., Fuda, T., Kuriiwa, T., Kamegawa, A., Takamura, H. and Okada, M., J. Alloys Compd., 330-522, 522 (2002).Google Scholar
7 Amendola, S. C., Sharp-Goldman, S. L., Janjua, M. S., Kelly, M. T., Petillo, P. J. and Binder, M., J. Power Sources, 186, 186 (2000).Google Scholar
8 Kojima, Y., Suzuki, K., Fukumoto, K., Sasaki, M., Yamamoto, T., Kawai, Y. and Hayashi, H., Int. J. Hydrogen Energy, 1029, 1029 (2002).Google Scholar
9 Kojima, Y., Suzuki, K., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., and Matsumoto, S., J. Power Sources, 22, 22 (2004).Google Scholar
10 Kojima, Y., Kawai, Y., Nakanishi, H., and Matsumoto, S., J. Power Sources, 36, 36 (2004).Google Scholar
11 Kojima, Y. and Haga, T., Int. J. Hydrogen Energy, 989, 989 (2003).Google Scholar
12 Li, Z. P., B. Liu, H., Arai, K., Morigazaki, N. and Suda, S., Int. J. Hydrogen Energy, 356-469, 469 (2003).Google Scholar
13 Kojima, Y., Kawai, Y., Kimbara, M., Nakanishi, H. and Matsumoto, S., Int. J. Hydrogen Energy, 1213, 1213 (2004).Google Scholar
14 Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Ph. Mauron and Ch. Emmenegger, J. Power Sources, 1, 1 (2003).Google Scholar
15 Bogdanoviæ, B. and Schwickardi, M., J. Alloys Compd., 253-1, 1 (1997).Google Scholar
16 Jensen, C. M., Zidan, R., Mariels, N. Hee, A. and Hagen, C., Int. J. Hydrogen Energy, 461, 461 (1999).Google Scholar
17 Gross, K. J., Thomas, G. J. and Jensen, C. M., J. Alloys Compd., 330-683, 683 (2002).Google Scholar
18 Fichtner, M., Engel, J., Fuhr, O., Kircher, O. and Rubner, O., Mater. Sci. Eng. B, 42, 42 (2004).Google Scholar
19 Chen, P., Xiong, Z., Luo, J., Lin, J. and Tan, K. L., Nature, 302, 302 (2002).Google Scholar
20 Kojima, Y. and Kawai, Y., Chemical Commun., 2210 (2004).Google Scholar
21 Leng, H. Y., Ichikawa, T., Hino, S., Hanada, N., Isobe, S. and Fujii, H., J. Phys. Chem. B, 8763, 8763 (2004).Google Scholar
22 Luo, W., J. Alloys Compd., 284, 284 (2004).Google Scholar
23 Nakamori, Y., Kitahara, G. and Orimo, S., J. Power Sources, 309, 309 (2004).Google Scholar
24 Liang, G., Huot, J., Boily, S., Neste, A. Van and Schulz, R., J. Alloys Compd., 247, 247 (1999).Google Scholar
25 Barkhordarian, G., Klassen, T. and Bormann, R., J. Alloys Compd., 242, 242 (2004).Google Scholar
26 Kojima, Y., Suzuki, K., and Kawai, Y., J. Mater. Sci. Lett., 2227, 2227 (2004).Google Scholar
27 Kojima, Y., Kawai, Y. and Haga, T., Mat. Res. Soc. Symp. Proc., Materials for Hydrogen Storage (2005) in press.Google Scholar
28 Newson, E., Haueter, Th., Hottinger, P., Roth, F. Von, Scherer, G. W. H. and Schucan, Th. H., Int. J. Hydrogen Energy, 905, 905 (1998).Google Scholar
29 Kariya, N., Fukuoka, A. and Ichikawa, M., Appl. Catal. A: General, 91, 91 (2002).Google Scholar
30 Reilly, J. J., in Anderson, A. F. and Maeland, M. J. (eds.), Hydrides for Energy Storage, Pergamon, Oxford, 1978, pp.301322.Google Scholar
31 Osumi, Y., Suzuki, H., Kato, A., Oguro, K., Sugioka, T. and Fujita, T., J. Less-Common Met., 257, 257 (1983).Google Scholar
32 Beeri, O., Cohen, D., Gavra, Z., Johnson, J. R. and Mintz, M. H., J. Alloys Comp., 299, 217 (2000).Google Scholar
33 Pauling, L., The Chemical Bond, Cornell University Press (1967).Google Scholar
34 Mendelsohn, M. H., Gruen, D. M. and Dwight, A. E., Nature, 45, 45 (1977).Google Scholar
35 Fujitani, S., Yonezu, I., Saito, T., Furukawa, N., Akiba, E., Hayakawa, H. and Ono, S., J. Less-Common Met., 172-220, 220 (1991).Google Scholar
36 Nagasako, N., Fukumoto, A. and Miwa, K., Phys. Rev., B 155106, 155106 (2002).Google Scholar
37 Kittel, C., Introduction to Solid State Physics, Seventh Edition, John Wiley & Sons, New York (1996).Google Scholar
38 Metals Handbook Desk edition, Boyer, H.E. and Gall, T. L. Eds., American Society of Metals (1985).Google Scholar
39 Comings, E. W., High Pressure Technology, McGraw-Hill, New York (1956) pp.486487.Google Scholar