Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-09-06T08:47:53.142Z Has data issue: false hasContentIssue false

Development of novel bioelectrocatalytic platform based on in situ generated gold nanoparticles for biomedicalapplications

Published online by Cambridge University Press:  06 March 2012

Prem C. Pandey
Affiliation:
Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India.
Dheeraj S. Chauhan
Affiliation:
Department of Applied Chemistry, Institute of Technology, Banaras Hindu University, Varanasi- 221005, India.
Get access

Abstract

Gold nanoparticles (AuNp) formed using alkoxysilane precursors are utilizedin the development of thin organically modified silicates (ormosil) films.The resulting films are optically transparent thereby retaining the opticalproperties of AuNp. Surface morphology shows that the in situ generated AuNp retained their nanogeometry in the ormosilfilms. An application of the AuNp encapsulated ormosils is shown inelectrocatalytic determination of hydrogen peroxide. For this purpose,potassium ferricyanide is chosen as electron transfer mediator and isencapsulated in the films. Results show that the presence of AuNp in theormosil matrix dramatically improves the electrochemical behavior ofpotassium ferricyanide. The ormosil films are utilized for electrocatalyticdetermination of hydrogen peroxide. In order to investigate thebiocompatibility of the ormosil film, horseradish peroxidase (HRP) isincorporated resulting in improvement in oxidation and reduction ofperoxide.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Cui, H., Zhang, Z. -F. and Shi, M. –J., J. Phys. Chem. B 109, 3099 (2005).CrossRefGoogle Scholar
2. Dass, A., Guo, R., Tracy, J. B., Balasubramanian, R., Douglas, A. D. and Murray, R. W., Langmuir 24, 310 (2008).CrossRefGoogle Scholar
3. Cho, S. –J., Idrobo, J. –C., Olamit, J., Liu, K., Browning, N. D. and Kauzlarich, S. M., Chem. Mater. 17, 3181 (2005).CrossRefGoogle Scholar
4. Rahman, M. A., Son, J. I., Won, M. –S. and Shim, Y. –B., Anal. Chem. 81, 6604, (2009).CrossRefGoogle Scholar
5. Guo, R., Wang, H., Peng, C., Shen, M., Pan, M., Cao, X., Zhang, G. and Shi, X., J. Phys. Chem. C 114, 50 (2010).CrossRefGoogle Scholar
6. Isaacs, S. R., Cutler, E. C., Park, J. –S., Lee, T. R. and Shon, Y. –S., Langmuir 21, 5689 (2005).CrossRefGoogle Scholar
7. Maduraiveeran, G. and Ramaraj, R., J. Electroanal. Chem. 608, 52 (2007).CrossRefGoogle Scholar
8. Pandey, P. C., Chauhan, D. S. and Singh, V., Mat. Sci. Eng. C 32, 1 (2012).CrossRefGoogle Scholar
9. Pandey, P. C. and Chauhan, D. S., A Process For In situ Generation of Noble Metal Nanoparticles and thereafter Core Shell of the same, Indian Patents 2382/ DEL/2010.Google Scholar
10. de Mattos, L., Gorton, L. and Ruzgas, T., Biosens. Bioelectron. 18, 193 (2003).CrossRefGoogle Scholar
11. Moscone, D., D’Ottavi, D., Compagnone, D., Palleschi, G. and Amine, A., Anal. Chem. 73, 2529 (2001).CrossRefGoogle Scholar
12. Lukachova, L. V., Kotel’nikova, E. A., D’Ottavi, D., Shkerin, E. A., Karyakina, E. E., Palleschi, G., Curulli, A. and Karyakin, A. A., Bioelectrochemistry 55, 145 (2002).CrossRefGoogle Scholar
13. Karyakin, A. A., Electroanalysis 13, 813 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
14. Karyakin, A. A., Karyakina, E. E. and Gorton, L., Anal. Chem. 72, 1720 (2000).CrossRefGoogle Scholar
15. Wang, G., Zhou, J. and Li, J., Biosens. Bioelectron. 22, 2921 (2007).CrossRefGoogle Scholar
16. Haghighi, B., Hamidi, H. and Gorton, Lo, Sens. Actuators B 147, 270 (2010).CrossRefGoogle Scholar