Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T02:04:01.670Z Has data issue: false hasContentIssue false

Diamond CVD Growth Mechanisms and Reaction Rates From First-Principles

Published online by Cambridge University Press:  10 February 2011

A.P. Sutton
Affiliation:
Department of Materials, Oxford University, Oxford OX1 3PH, UK
C.C. Battaile
Affiliation:
Sandia National Laboratories, Albuquerque, NM
D.J. Srolovitz
Affiliation:
Princeton University, Princeton, NJ
J.E. Butler
Affiliation:
Naval Research Laboratory, Washington, DC
D.S. Dandy
Affiliation:
Colorado State University, Fort Collins, CO
S.J. Harris
Affiliation:
Ford Scientific Research Laboratory, Deaborn, MI
M.P. D'evelyn
Affiliation:
GE Corporate Research and Development, Schenectady, NY
Get access

Abstract

CVD diamond is an enabling material for diverse applications. In recent years, multiscale modelling of CVD growth in conjunction with experimental studies of the deposition processes has made a substantial progress towards our understanding of the fundamental growth chemistry and material quality. Macroscopic gas phase simulations of the CVD reactor, the mesoscale kinetic Monte-Carlo (KMC) modelling of the crystal growth and nanoscale modelling of the surface chemistry are three main legs in the multiscale hierarchy. In the framework of this methodology we have performed first-principles quantum mechanical calculations of bonding and reaction kinetics of the elementary growth processes and provided critical input in the form of atomistic growth mechanisms and reaction rates for the mesoscale KMC modelling of CVD diamond growth. A key success was achieved by combining first-principles and Monte Carlo studies to elucidate (100) growth mechanisms that have perplexed the diamond growth community for many years.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Handbook of Industrial Diamonds and Diamond Films, First Edition, ed. Prelas, M.A., Popovici, G., and Bigelow, L.K., Marcel Dekker, Inc., (1997).Google Scholar
[2] Celii, F.G. and Butler, J.E., Appl. Phys. Lett. 54, 1031 (1989); H.R. Thorsheim and J.E. Butler, “Vapor Phase Diagnostics in Diamond CVD”, in Synthetic Diamond, K.E. Spear and J.P. Dismukes, eds., (John Wiley & Sons, New York, 1994) Ch. 7, p.193; L.L. Connell, H.-n. Chu, J.W. Fleming, D.J. Vestyck, and J.E. Butler, J. Appl. Phys. 79, 3622 (1995).10.1063/1.100789Google Scholar
[3] Thoms, B.D. and Butler, J.E., Surface Science, 328, 291 (1995); D.D. Koleske, S.M. Gates, B.D. Thorns, J.N. Russell, Jr., and J.E. Butler, J. Chem.Phys. 102, 992 (1995); M.P. D'Evelyn, in Handbook of Industrial Diamonds and Diamond Films, M.A. Prelas, G. Popovici, and L.K. Bigelow, eds. (Marcel Dekker, New York, 1998) Ch. 4, p. 89.10.1016/0039-6028(95)00039-9Google Scholar
Û4] Battaile, C.C., Srolovitz, D.J., and Butler, J.E., J. Cryst. Growth 194, 353 (1998).10.1016/S0022-0248(98)00685-XGoogle Scholar
Û5] Dandy, D.S. and Coltrin, M.E., J. Appl. Phys. 76, 3102 (1994).10.1063/1.357492Google Scholar
[6] Garrison, B.J., Dawnkaski, E.J., Srivastava, D., and Brenner, D.W., Science 255, 835 (1992).10.1126/science.255.5046.835Google Scholar
[7] Delley, B., J. Chem. Phys. 92, 508517 (1990); Cerius2 Quantum Mechanics - Chemistry: ADF, DMol3, Gaussian, and MOPAC, Molecular Simulations Inc. (1998)10.1063/1.458452Google Scholar
[8] Becke, A.D., J. Chem. Phys. 88, 2547 (1988); ] J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).10.1063/1.454033Google Scholar
[9] Oxford Order N Package, Department of Materials, Oxford University (1996).Google Scholar
[10] Harris, S.J. and Goodwin, D.G., J. Phys. Chem. 97, 23 (1993).10.1021/j100103a007Google Scholar
[11] Frenklach, M. and Skokov, S., J. Phys. Chem. B 101, 3025-36 (1997); S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 98, 8 (1994); S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 98, 7073 (1994).10.1021/jp9638043Google Scholar
[12] Chu, C.J., Hauge, R.H., Margrave, J.L., and D'Evelyn, M.P., Appl. Phys. Lett. 61, 1393 (1992); R.E. Rawles, W.G. Morris, and M.P. D'Evelyn, in Diamond for Electronic Applications, edited by D.L. Dreifus, A. Collins, T. Humphreys, K. Das, and P.E. Pehrsson, Mater. Res. Soc. Symp. Proc. 416 (MRS, Pittsburgh, 1996) pp. 13–8.10.1063/1.107548Google Scholar