Hostname: page-component-7dd5485656-wxk4p Total loading time: 0 Render date: 2025-10-28T09:10:01.462Z Has data issue: false hasContentIssue false

Dielectric Response of free Standing Strontium Titanate Thin Films from 10 Khz to 1 Ghz as A Function of Temperature and Applied Voltage

Published online by Cambridge University Press:  10 February 2011

M. J. Dalberth
Affiliation:
University of Colorado-Boulder, Department of Physics, Boulder, CO
J. C. Price
Affiliation:
University of Colorado-Boulder, Department of Physics, Boulder, CO
C. T. Rogers
Affiliation:
University of Colorado-Boulder, Department of Physics, Boulder, CO
Get access

Abstract

Using pulsed laser ablation, we have grown epitaxial bilayers of strontium titanate (STO) and yttrium barium copper oxide (YBCO) on (110) neodymium gallate (NGO) substrates. Using a selective acid etch, we have removed the YBCO from the middle of the bilayer and lifted off the STO films from their parent substrates. Using coplanar interdigital capacitors patterned on the surface of the films, we have measured the capacitance and loss as a function of frequency (from 10 kHz to 1 GHz), temperature (from 300 K to 4 K), and applied electric field (up to roughly 2 V/μm). We have seen frequency dependent loss peaks in the films that indicate thermally activated behavior, and an improvement in the tuning quality.

Information

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Dalberth, M. J., Stauber, R. E., Price, J. C., Rogers, C. T., and Galt, D., Appi. Phys. Lett., 72, p.507 (1998).10.1063/1.120799Google Scholar
2. Gait, D., Price, J. C., Beall, J. A., and Harvey, T. E., IEEE Trans. Appl. Supercond., 5, p. 2575 (1995).Google Scholar
3. Galt, D., Price, J. C., Beall, J. A-, and Ono, R. H., Appl. Phys. Lett., 63, p. 3078, (1993).10.1063/1.110238Google Scholar
4. Findikoglu, A. T., Jia, Q. X., Reagor, D. W., and Wu, X. D., Mater. Res. Soc. Symp. Proc., 401, p. 303 (1996).10.1557/PROC-401-303Google Scholar
5. Krupka, J., Geyer, R. G., Kuhn, M., and Hinken, J. H., IEEE Trans Microwave Theory Tech., 42, p. 1886 (1994).10.1109/22.320769Google Scholar
6. Ruprecht, G. and Bell, R. O., Phys. Rev., 125, p. 1915 (1962).10.1103/PhysRev.125.1915Google Scholar
7. Dalberth, M. J., Price, J. C., and Rogers, C. T., Mater. Res. Soc. Symp. Proc., 493, p. 371 (1998).10.1557/PROC-493-371Google Scholar
8. E Yablonovitch, Hwang, D. M., Gmitter, T. J., Florez, L. T., and Harbison, J. P., Appl. Phys. Lett., 56, p. 2419 (1990).Google Scholar
9. Eddy, M. M., Hanson, R., Rao, M. R., Zuck, B., Speck, J. S., Tarsa, E. J., Mater. Res. Soc. Symp Proc., 474, p. 365 (1997).10.1557/PROC-474-365Google Scholar
10. Dalberth, M. J., Stauber, R. E., Price, J. C., Rogers, C. T., and Gait, D., Mater. Res. Soc. Symp. Proc., 474, p. 43 (1997).10.1557/PROC-474-43Google Scholar
11. GaIt, D., Rivkina, T., and Cromar, M. W., Mater. Res. Soc. Symp. Proc., 493, p. 341 (1998).10.1557/PROC-493-341Google Scholar
12. Vendik, O. G., Ter-Martirosyan, L. T.. Dedyk, A. I. Karmanenko, S. F., and Chakalov, R. A., Ferroelectrics, 144, p. 33 (1973).10.1080/00150199308008622Google Scholar