Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T22:11:05.130Z Has data issue: false hasContentIssue false

Different Solvent Free Synthetic Routes to Organic/Inorganic Hybrid Materials

Published online by Cambridge University Press:  10 February 2011

H. Kaddami
Affiliation:
Laboratoire des Matériaux Macromoléculaires, Bâtiment 403, UMR 5627, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France, pascault@insa-Iyon.fr Université Cadi Ayyad, FSTG, BP 618, Gueliz, Marrakech, Marocco
J. F. Gerard
Affiliation:
Laboratoire des Matériaux Macromoléculaires, Bâtiment 403, UMR 5627, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France, pascault@insa-Iyon.fr
J. P. Pascault
Affiliation:
Laboratoire des Matériaux Macromoléculaires, Bâtiment 403, UMR 5627, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France, pascault@insa-Iyon.fr
Get access

Abstract

The sol-gel chemistry in low-temperature conditions can be used to produce organicinorganic materials nanocomposite from the in-situ formation of silica-rich phase in a polymer matrix. Different synthetic routes have been proposed: i) hydrolysis and condensation reactions of silane end capped oligomers, ii) polymerization of hydroxyethyl methacrylate, HEMA in presence of preformed functionalized silica nanoparticles, and iii) simultaneous hydrolysis and condensation of tetraethoxysilane and polymerization of hydroxyethymeth-acrylate.

Rheological investigations made during the polymerization of these three systems display many differences. Time for gelation was chosen as the time at which the loss factor, tanδ is independent on the testing frequency, or the time at which the system displays an elastic response. Vitrification phenomenon is associated with a tanδ peak. In some cases vitrification of the inorganic-rich phase interfered with the observation of gelation and the appearance of a non soluble fraction in a good solvent like tetrahydrofurane can help for attribution.

During radical chain-polymerization of HEMA a classical Trommsdorff-effect was observed. It can be at the same time than the macrogelation in the case of neat HEMA or delayed by the presence of grafted SiO2 nanoparticles. During simultaneous synthesis of inorganic and organic phases, vitrification of the inorganic-rich phase occured just after macrogelation of the system.

Final morphologies are strongly dependent on the occurrence of these different structural transformations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Surivet, F., Lam, T. M., Pascault, J. P., Pham, Q. T., Macromolecules 25 p. 4309 (1992).10.1021/ma00043a011Google Scholar
(2) Kaddami, H., Surivet, F., Gérard, J. F., Lam, T. M., Pascault, J. P., J. Inorg. and Organometal. Polym. 4 (2) p. 183 (1993).10.1007/BF01036542Google Scholar
(3) Cuney, S., Gérard, J. F., Pascault, J. P., Vigier, G., Mat. Res. Soc. Symp. Proc. 435, p.143 (1996).10.1557/PROC-435-143Google Scholar
(4) Landry, C. J. T., Coltrain, B. K., Landry, M. R., Fitzgerald, J. J., Long, V. K., Macromolecules 26 p. 3702 (1993).10.1021/ma00066a032Google Scholar
(5) Bourgeat-Lami, E., Guyot, A., Polymer 36, p.4385 (1995).10.1016/0032-3861(95)96843-WGoogle Scholar
(6) Becker, C., Krug, H., Schmidt, H., Mat. Res. Soc. Symp. Proc. 435 p. 237 (1996).10.1557/PROC-435-237Google Scholar
(7) Hajji, P., David, L., Gérard, J. F., Pascault, J. P., Vigier, G., J. Polym. Sci. Phys. to be published Google Scholar
(8) Novak, B. M., Ellsworth, M. W., Mat. Sci. Eng. A162, p. 257 (1993).10.1016/0921-5093(90)90051-4Google Scholar
(9) Schmidt, H., J. of Sol-Gel Sci. and Tech. 1, p. 217 (1994).10.1007/BF00486165Google Scholar
(10) Mark, J. E., Lee, C. Y. C., Bianconi, P. A., Hybrid Organic-Inorganic Composites, ACS 585, Am. Chem. Soc. Washington DC (1995).Google Scholar
(11) Eloundou, J. P., Fève, M., Gérard, J. F., Harran, D., Pascault, J. P., Macromolecules 29, p.6907 (1996).10.1021/ma960287dGoogle Scholar
(12) Hogson, D. F., Amis, E. J., Macromolecules 23. p.2512 (1990).10.1021/ma00211a019Google Scholar
(13) Yu, Q., Amis, E. J., Makromol. Chem. Macromol. Symp. 76. p. 193 (1993).10.1002/masy.19930760128Google Scholar
(14) Havlicek, I., Dusek, K. in: Crosslinked epoxies, Sedlacek, B., Kahavec, J. Eds, Walter de Gruyter, Berlin 359(1987).Google Scholar
(15) Pascault, J. P., Makromol. Chem. Macromol. Symp. 122. 45 (1997).10.1002/masy.19971220109Google Scholar
(16) Hajji, P., David, L., Gérard, J. F., Kaddami, H., Pascault, J. P., Vigier, G., Mat. Res. Soc. Symp. Proc. to be published.Google Scholar
(17) Glaser, R. H., Wilkes, G. L., ACS Polym. Prepr. New Orleans 28 (2), p. 236 (1985).Google Scholar
(18) Zhu, S., Hamielec, A., Makromol. Chem. Macromol. Symp. 63. p.135 (1992).10.1002/masy.19920630112Google Scholar
(19) Naghash, H. J., Okay, O., Polymer 38 p.1187 (1997).10.1016/S0032-3861(96)00615-5Google Scholar
(20) Huang, C. W., Sun, Y. N., Huang, W. F., J Polym. Sci. Chem. 3 p.1873 (1997).10.1002/(SICI)1099-0518(19970730)35:10<1873::AID-POLA2>3.0.CO;2-P3.0.CO;2-P>Google Scholar
(21) Dusek, K., Polymer Gels and Networks 4, p.383 (1996).10.1016/S0966-7822(97)89914-5Google Scholar