Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-16T10:10:01.717Z Has data issue: false hasContentIssue false

Direct-Write E-beam Submicron Domain Engineering in LiNbO3 Thin Films Grown by Liquid Phase Epitaxy

Published online by Cambridge University Press:  01 February 2011

Ji-Won Son
Affiliation:
Solid State Photonics Lab, Stanford University, Stanford, CA 94305, U.S.A.
Yin Yuen
Affiliation:
Solid State Photonics Lab, Stanford University, Stanford, CA 94305, U.S.A.
Sergei S. Orlov
Affiliation:
Solid State Photonics Lab, Stanford University, Stanford, CA 94305, U.S.A.
Bill Phillips
Affiliation:
Solid State Photonics Lab, Stanford University, Stanford, CA 94305, U.S.A.
Ludwig Galambos
Affiliation:
Solid State Photonics Lab, Stanford University, Stanford, CA 94305, U.S.A.
Vladimir Ya. Shur
Affiliation:
Institute of Physics and Applied Mathematics, Ural State University, Ekaterinburg 620083, Russia
Lambertus Hesselink
Affiliation:
Solid State Photonics Lab, Stanford University, Stanford, CA 94305, U.S.A.
Get access

Abstract

We demonstrate submicron ferroelectric domain engineering in liquid phase epitaxy (LPE) LiNbO3 thin films grown on LiNbO3 and LiTaO3 substrates using a direct-write electron beam poling for waveguide applications. LiNbO3 thin films of several-micron thickness were grown using a flux melt of 20 mol% LiNbO3-80 mol% LiVO3. To engineer domain structures in Z- oriented LPE LiNbO3 films, a direct-write electron beam poling was implemented. It is shown that we can engineer the domain structure of LPE LiNbO3 films by using direct e-beam poling, even though the domain orientations of the film and the substrate are opposite. We also compared e-beam poling behavior in a congruent LiNbO3 single crystal and a LPE LiNbO3 film. Using the same e-beam scan parameters, a much enhanced domain structure is obtained in LPE films. Defect structure and composition effects are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myers, L. E., Eckardt, R.C., Fejer, M. M., Byer, R.L., Bosenberg, W. R., and Pierce, J. W., J. Opt. Soc. Am. B, 12(11), 21022116 (1995).Google Scholar
2. Yamada, M., Saitoh, M., and Ooki, H., Appl. Phys. Lett,. 69(24), 36593661 (1996).Google Scholar
3. Busacca, A. C., Sones, C. L., Apostolopoulos, V., Eason, R. W., and Mailis, S., Appl. Phys. Lett., 81(26), 49464948 (2002).Google Scholar
4. Restoin, C., Darraud-Taupiac, C., Decossas, J. L., Vareille, J. C., Hauden, J., and Martinez, A., J. Appl. Phys., 88(11), 66656668 (2000).Google Scholar
5. Chou, M., Ph.D. Dissertation, Stanford University, Stanford, 1999.Google Scholar
6. Kondo, S., Miyazawa, S., Fushimi, S., and Sugii, K., App. Phys. Lett., 26(9), 489491 (1975).Google Scholar
7. Yamada, A., Tamada, H., and Saitoh, M., J. Crys. Growth, 132, 4860 (1993).Google Scholar
8. Kawaguchi, T., Yoon, D., Minakata, M., Okada, Y., Imaeda, M., and Fukuda, T., J. Crys. Growth, 152, 8793 (1995).Google Scholar
9. Kaigawa, K., Yamamura, Y., Kumazawa, Y., Kawaguchi, T., Imaeda, M., Sakai, H., and Tsurumi, T., J. Crys. Growth, 244, 7077 (2002).Google Scholar
10. Cho, Y., Matsuura, K., Kazuta, S., Odagawa, H., and Yamanouchi, K., Jpn. J. Appl. Phys. 38, Pt.1, No.5B, 32793282 (1999).Google Scholar