Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T16:10:13.782Z Has data issue: false hasContentIssue false

Dispersion of Metal Oxide Nanoparticles in Conjugated Polymers: Investigation of the Tio2/PPV Nanocomposite

Published online by Cambridge University Press:  10 February 2011

M.-I. Baraton
Affiliation:
LMCTS, Faculty of Sciences, 123 Av. A. Thomas, F-87060 Limoges (France)
L. Merhari
Affiliation:
CEKAMEC R&D, 64 avenue de la Libération, F-87000, Limoges, (France)
J. Wang
Affiliation:
Polymer Program at the Institute of Materials Science
K. E. Gonsalves
Affiliation:
Polymer Program at the Institute of Materials Science Department of Chemistry, University of Connecticut, Storrs, CT 06269
Get access

Abstract

It is well established that the dispersion of nanosized metal particles in a polymer matrix can induce non linear optical properties, yet very little is known about the effect of semiconducting transition metal oxide nanoparticles on both electrical and luminescence properties of conjugated polymers. In this paper, we report the synthesis of a nanostructured TiO2/poly(pphenylenevinylene) system and show by diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) that a stable conjugated nanocomposite is obtained. Investigation of the photoluminescence (PL) properties reveals both a broadening and a blue shift of the emission spectra. Adsorption of oxygen is found to be stronger on the nanocomposite than on PPV and to reversibly quench the PL emission, thus suggesting enhanced gas sensing properties. A tentative mechanism explaining the role of n-TiO2 is briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Epstein, A.J., MRS Bulletin 22(6), 1623 (1997).Google Scholar
2. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burn, P.L., and Holmes, A.B., Nature 347, 539 (1990).Google Scholar
3. Manca, J., Bijnens, W., Kiebooms, R., D'Haen, J., D'Olieslaeger, M., Wu, T.-D., De Ceunink, W., De Schepper, L., Vanderzande, D., Gelan, J. and Stals, L. (E-MRS Proc., Symp. M, 1997) in press.Google Scholar
4. Siegel, R.W. in Mechanical Properties and Deformation Behavior of Materials having Ultra-Fine Microstructures, edited by Nastasi, M. (Kluwer, Dordrecht, 1993) p. 509.Google Scholar
5. Heinrich, V.E. and Cox, P.A., The Surface Science of Metal Oxides, (Cambridge University Press, 1994), and references therein.Google Scholar
6. Lide, Z. and Chi-Mei, M., Nanostruct. Mater. 6, 831 (1995).Google Scholar
7. Gonsalves, K.E. and Chen, X., J. Mater. Res. 12(5), 1274 (1997).Google Scholar
8. Baraton, M.-I., Chen, X. and Gonsalves, K.E., J. Mater. Chem., 6(8), 14071412 (1996).Google Scholar
9. Bradley, D.D.C., J. Phys. D: Appl. Phys. 20, 1389 (1987).Google Scholar
10. Baraton, M.-I., Merhari, L., Chancel, F. and Tribout, J. (Mater. Res. Soc. Proc. 448, Pittsburgh, PA, 1997) pp. 8186.Google Scholar
11. Papadimitrakopoulos, F., Konstadinidis, K., Miller, T.M., Opila, R., Chandross, E.A. and Galvin, M.E., Chem. Mater. 6, 1563 (1994).Google Scholar
12. Lüer, L., Egelhaaf, H.-J. and Oelkrug, D. (E-MRS Proc., Symp. M, 1997) in press.Google Scholar