Skip to main content Accessibility help

Analysis of Hydrogen Adsorption in Microporous Adsorbents at Room Temperature and High Pressures

  • Tyler G. Voskuilen (a1) and Timothée L. Pourpoint (a2)


An experimental study of hydrogen adsorption in a variety of high-surface area adsorbent materials has been conducted at room temperature and pressures up to 500 bar on high surface area activated carbons, zeolite templated carbons (ZTC), and metal organic frameworks (MOFs). For all materials, excess hydrogen adsorption isotherms were measured up to 500 bar and have been analyzed in terms of the BET surface area and pore size distribution. The materials were also evaluated for their increase in hydrogen storage density over compressed gas. It was determined that, due to the lower excess adsorption and skeletal densities for the microstructured materials, MOF-177 and ZTC have worse storage densities than compressed gas at most pressures, even when assuming a bed compaction factor of two, while the activated carbons offer marginal increases in storage density over the pressure range investigated.



Hide All
1. Jordá-Beneyto, M., Suarez-Garcia, F., Lozano-Castello, D., Cazorla-Amoros, D., and Linares-Solano, A., Carbon 45, 293 (2007).10.1016/j.carbon.2006.09.022
2. Nishihara, H., Hou, P.-X., Li, L.-X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., and Kyotani, T., J. Phys. Chem. 113, 3189 (2009).
3. de la Casa Lillo, M. A., Lamari-Darkrim, F., Cazorla-Amoros, D., and Linares-Solano, A., Phys. Chem. B 106, 10930 (2002).
4. Alcaniz-Monge, J. and Roman-Martinez, M. C., Microporous and Mesoporous Materials 112, 510 (2008).10.1016/j.micromeso.2007.10.031
5. Züttel, A., Sudan, P., Mauron, P., Kiyobayashi, T., Emmenegger, C., and Schlapbach, L., Int. J. Hydrogen Energy 27, 203 (2002).
6. Voskuilen, T., Zheng, Y., and Pourpoint, T., Int. J. Hyd. Energy 35, 10387 (2010).
7. Leachman, J., Jacobsen, R., and Lemmon, E., J. Phys. Chem. Reference Data 38, 721 (2009).
8. Haesselbarth, W. and Bremser, W., Accreditation and Quality Assurance 9, 597 (2004).
9. ISO 5725-1. Accuracy (trueness and precision) of measurement methods and results-Part 1: General principles and definitions, 1994.
10. Li, Y. and Yang, R. T., Langmuir 23, 12937 (2007).
11. Proch, S., Herrmannsdorfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., and Senker, J., Chem. Eur. J. 14, 8204 (2008).
12. Zacharia, R., Cossement, D., Lafi, L. and Chahine, R., J. Mater. Chem. 20, 2145 (2010).
13. Gogotsi, Y., Portet, C., Osswald, S., Simmons, J. M., Yildirim, T., Laudisio, G., and Fischer, J. E., Int. J. Hydrogen Energy, 34, 6314 (2009).10.1016/j.ijhydene.2009.05.073
14. Purewal, J. J., Liu, D., Yang, J., Sudik, A., Siegel, D.J., Maurer, S., Muller, U., Int. J. Hydrogen Energy, In Press, DOI: 10.1016/j.ijhydene.2011.03.002 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed