Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T19:42:03.160Z Has data issue: false hasContentIssue false

Combinatorial methods and high-throughput experimentation in synthetic polymer chemistry

Published online by Cambridge University Press:  01 February 2011

Richard Hoogenboom
Affiliation:
Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology and Dutch Polymer Institute (DPI), PO Box 513, 5600 MB Eindhoven, The Netherlands. E-Mail: u.s.schubert@tue.nl; Internet: www.schubert-group.com.
Michael A. R. Meier
Affiliation:
Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology and Dutch Polymer Institute (DPI), PO Box 513, 5600 MB Eindhoven, The Netherlands. E-Mail: u.s.schubert@tue.nl; Internet: www.schubert-group.com.
Ulrich S. Schubert
Affiliation:
Laboratory of Macromolecular Chemistry and Nanoscience, Eindhoven University of Technology and Dutch Polymer Institute (DPI), PO Box 513, 5600 MB Eindhoven, The Netherlands. E-Mail: u.s.schubert@tue.nl; Internet: www.schubert-group.com.
Get access

Abstract

Combinatorial chemistry has revolutionized the drug discovery as well as the catalyst discovery and optimization process during the last years. Nowadays, triggered by these developments, combinatorial methods and parallel chemistry also emerge in the field of material and polymer chemistry. Especially the field of polymer research seems to be perfectly suited for these approaches since many parameters can be varied during synthesis, processing, blending, formulation and compounding. Moreover, the screening of interesting parameters, such as molecular weight, polydispersity, polymerization kinetics, viscosity, hardness or stiffness, became feasible only recently.

Within this contribution we will describe our strategy to construct a most efficient workflow in the field of combinatorial polymer research. New developments made by our group as well as some general aspects will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W., Weinberg, W. H., Angew. Chem. 1999, 111, 26482689; Angew. Chem. Int. Ed. 38, 2494–2532 (1999).Google Scholar
2. Hoogenboom, R., Meier, M. A. R., Schubert, U. S., Macromol. Rapid. Commun. 24, 1532 (2003).Google Scholar
3. Meier, M. A. R., Hoogenboom, R., Schubert, U. S., Macromol. Rapid. Commun. 25, 2133 (2004).Google Scholar
4. Williamson, D. T., Long, T. E., Polym. Preprints 42, 643 (2001).Google Scholar
5. Gooding, O. W., Vo, L., Bhattacharyya, S., Labadie, J. W., J. Comb. Chem. 4, 576 (2002).Google Scholar
6. Flaten, G. R., Walmsley, A. D., Analyst 128, 935 (2003).Google Scholar
7. Hoogenboom, R., Schubert, U. S., J. Polym. Sci.: Part A: Polym. Chem. 41, 24252434 (2003).Google Scholar
8. Aoi, K., Okada, M., Prog. Polym. Sci. 21, 151208 (1996).Google Scholar
9. Hoogenboom, R., Fijten, M. W. M., Meier, M. A. R., Schubert, U. S., Macromol. Rapid Commun. 24, 9297 (2003).Google Scholar
10. Hoogenboom, R., Fijten, M. W. M., Brändli, C., Schroer, J., Schubert, U. S., Macromol. Rapid Commun. 24, 98103 (2003).Google Scholar
11. Hoogenboom, R., Fijten, M. W. M., Abeln, C. H., Schubert, U. S., Macromol. Rapid Commun. 25, 237242 (2004).Google Scholar
12. Hoogenboom, R., Fijten, M. W. M., Abeln, C. H., Schubert, U. S., Polym. Mat. Sci. Eng. 90, (2004) in press.Google Scholar
13. Hoogenboom, R., Fijten, M. W. M., Schubert, U. S., Macromol. Rapid Commun. 25, 339343 (2004).Google Scholar
14. Hoogenboom, R., Fijten, M. W. M., Schubert, U. S., J. Polym. Sci.: Part A: Polym. Chem. 42, (2004) in press.Google Scholar
15. Hoogenboom, R., Fijten, M. W. M., Schubert, U. S., Polym. Mat. Sci. Eng., 90, (2004) in press.Google Scholar
16. Wang, J. S., Matyjaszewski, K., J. Am. Chem. Soc. 117, 5614 (1995).Google Scholar
17. Zhang, H., Fijten, M. W. M., Hoogenboom, R., Reinierkes, R., Schubert, U. S., Macromol. Rapid Commun. 24, 8186 (2003).Google Scholar
18. Zhang, H., Fijten, M. W. M., Hoogenboom, R., Schubert, U. S., ACS Symp. Ser. 845, 193205 (2003).Google Scholar
19. Zhang, H., Marin, V., Fijten, M. W. M., Schubert, U. S., J. Polym. Sci.: Part A: Polym. Chem. 42, (2004) in press.Google Scholar
20. Voorn, D.-J., Fijten, M. W. M., Meuldijk, J., Schubert, U. S., van Herk, A. M., Macromol. Rapid. Commun. 24, 320324 (2003).Google Scholar
21. Schmatloch, S., van den Berg, A. M. J., Schubert, U. S., Macromol. Rapid Commun. 25, 321325 (2004).Google Scholar
22. Guerrero-Sanchez, C., Schubert, U. S., Polym. Mat. Sci. Eng., 90, (2004) in press.Google Scholar
23. PSS HighSpeed columns, Polymer Standards Service GmbH, 55120 Mainz, Germany, http://www.polymer.de.Google Scholar
24. Meier, M. A. R., Schubert, U. S., Rapid Commun. Mass Spectrom. 17, 713716 (2003).Google Scholar
25. Meier, M. A. R., Hoogenboom, R., Fijten, M. W. M., Schneider, M., Schubert, U. S., J. Comb. Chem. 5, 369374 (2003).Google Scholar
26. Meier, M. A. R., de Gans, B. J., van den Berg, A. M. J., Schubert, U. S., Rapid Commun. Mass Spectrom. 17, 23492353 (2003).Google Scholar
27. de Gans, B. J., Schubert, U. S., Macromol. Rapid Commun. 24, 659666 (2003).Google Scholar
28. Macromol. Rapid Commun. 23, 643–645 (2002);Google Scholar
Macromol. Rapid Commun. 24, 642–643 (2003).Google Scholar
29. Macromol. Rapid Commun. 24, 3–142 (2003);Google Scholar
Macromol. Rapid Commun. 25, 3–386 (2004).Google Scholar