Skip to main content
×
Home
    • Aa
    • Aa

Low Temperature Crystal Growth and Characterization of Cd0.9Zn0.1Te for Radiation Detection Applications

  • Ramesh M. Krishna (a1), Timothy C. Hayes (a1), Peter G. Muzykov (a1) and Krishna C. Mandal (a1)
Abstract
ABSTRACT

Cd0.9Zn0.1Te (CZT) detector grade crystals were grown from zone refined Cd, Zn, and Te (7N) precursor materials, using the tellurium solvent method. These crystals were grown using a high temperature vertical furnace designed and installed in our laboratory. The furnace is capable of growing up to 8” diameter crystals, and custom pulling and ampoule rotation functions using custom electronics were furnished for this setup. CZT crystals were grown using excess Te as a solvent with growth temperatures lower than the melting temperatures of CZT (1092°C). Tellurium inclusions were characterized through IR transmittance maps for the grown CZT ingots. The crystals from the grown ingots were processed and characterized using I-V measurements for electrical resistivity, thermally stimulated current (TSC), and electron beam induced current (EBIC). Pulse height spectra (PHS) measurements were carried out using a 241Am (59.6 keV) radiation source, and an energy resolution of ~4.2% FWHM was obtained. Our investigation demonstrates high quality detector grade CZT crystals growth using this low temperature solvent method.

Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: