Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T15:16:27.666Z Has data issue: false hasContentIssue false

Dose and Doping Dependence of Damage Annealing in Fe Mev Implanted Inp

Published online by Cambridge University Press:  21 February 2011

A. Carnera
Affiliation:
INFM and Università di Padova, Dipartimento di Fisica, Via Marzolo 8,1-35131 Padova, Italy, Gasparotto@padova.infn.it
B. Fraboni
Affiliation:
INFM and Università di Padova, Dipartimento di Fisica, Via Marzolo 8,1-35131 Padova, Italy, Gasparotto@padova.infn.it
A. Gasparotto
Affiliation:
INFM and Università di Padova, Dipartimento di Fisica, Via Marzolo 8,1-35131 Padova, Italy, Gasparotto@padova.infn.it
F. Priolo
Affiliation:
INFM and Università di Catania, Dipartimento di Fisica, C.so Italia 57,1-95129 Catania, Italy
A. Camporese
Affiliation:
CNR-ICTIMA, C.so Stati Uniti 4, 1-35127 Padova, Italy
G. Rossetto
Affiliation:
CNR-ICTIMA, C.so Stati Uniti 4, 1-35127 Padova, Italy
C. Frigeri
Affiliation:
CNR-MASPEC, Vía Chiavari 18/a, 1-43100 Parma, Italy
A. Cassa
Affiliation:
CNR-MASPEC, Vía Chiavari 18/a, 1-43100 Parma, Italy
Get access

Abstract

High energy (2 MeV) ion implantation of Fe in InP has been investigated by means of Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM) and secondary ions mass spectrometry (SIMS). The implanted doses ranged between 5×l013 and 5×l014 at/cm2. Annealing in the 650–800 °C range was performed and the primary as well as secondary damage evolution has been studied. The correlations between defect structure and Fe redistribution properties have been carefully analysed. The results show the role of the primary defect structure in determining the annealing properties, both for damage recovery and Fe redistribution. The latter is also influenced by the doping of the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Donnelly, J. P. and Hurwitz, C.E., Solis State Electron. 21, 475 (1978)Google Scholar
2 Pearton, S.J., Mater. Sci. Rep. 4, 313 (1990).Google Scholar
3 Camera, A., Gasparotto, A., Tromby, M., Caldironi, M., Pellegrino, S., Vidimari, F., Bocchi, C. and Frigeri, C., J. Appl. Phys. 76, 5085 (1994).Google Scholar
4 Gauneau, M., L'Haridon, H., Rupert, A. and Salvi, M., J. Appl. Phys. 53, 6823 (1982).Google Scholar
5 Schwarz, S.A., Schwartz, B., Sheng, T.T., Singh, S. and Tell, B., J. Appl. Phys. 58, 1698 (1985).Google Scholar
6 Ullrich, H., Knecht, A., Bimberg, D., Kräutle, H. and Schlaak, W., J. Appl. Phys 72, 3514 (1992).Google Scholar
7 Vellanki, J., Nadella, R.K., Rao, M.V., Holland, O.W., Simons, D. S. and Chi, P.H., J. Appl. Phys 73, 1126 (1993).Google Scholar
8 Ridgway, M.C., Elliman, R.G., Faith, M.E., Kemeny, P.C. and Davies, M., Nucl. Instr. and Meth. B96, 323 (1995).Google Scholar
9 Camera, A., Gasparotto, A., Scordilli, A., Priolo, F., Frigeri, C. and Rossetto, G., Nucl. Instr. and Meth. B96, 307 (1995).Google Scholar
10 Jones, K.S., Prussin, S. and Weber, E.R., Appl. Phys. A45 , 1 (1988).Google Scholar
11 Kringhøj, P., Hansen, J.L. and Yu. Shiryaev, S., J. Appl. Phys 72, 2249 (1992).Google Scholar
12 Zheng, P., Ruault, M.-O., Denanot, M.F., Descouts, B. and Krauz, P., J. Appl. Phys 69, 197 (1991).Google Scholar
13 Auvray, P., Guivarc'h, A., l'Haridon, H., Pelous, G., Salvi, M., and Henoc, P., J. Appl. Phys. 53, 6202 (1982).Google Scholar
14 Comer, J.J., Eirug Davies, D. and Lorenzo, J.P., J. Electrochem. Soc. 127, 1827 (1980).Google Scholar
15 Frigeri, C., Camera, A., and Gasparotto, A., Appl. Phys. A61 (1995) in press.Google Scholar