Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-08T18:21:53.619Z Has data issue: false hasContentIssue false

Dry Etch Self-Aligned AlInAs/InGaAs Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  26 February 2011

T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. F. Kopf
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Y. K. Chen
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
P. R. Smith
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
M. A. Chin
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Lothian
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

A dry etch fabrication technology for high-speed AlInAs/InGaAs Heterojunction Bipolar Transistors (HBT's) utilizing low-damage Electron Cyclotron Resonance (ECR) CH4/H2/Ar plasma etching is detailed. The dry etch process uses triple self-alignment of the emitter and base metals and the base mesa, minimizing the base-collector capacitance (CBC). Devices with 2 × 4 μm2 emitters demonstrated current gains of 30–50 with ft and fmax values of ≥ 80 GHz and ≥100 GHz respectively. The structure employs a two-stage collector to achieve breakdown voltage (Vceo ) of 7V. The combination of processing and layer structure delivers truly scalable high yield AlInAs/InGaAs HBT's with both DC and RF characteristics suitable for large-scale, high speed digital circuit applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jalali, B., Nottenburg, R. N., Chen, Y. K., Sivco, D., Humphrey, D. A. and Cho, A. Y., “High Frequency Submicrometer AlInAs/InGaAs Heterojunction Bipolar TransistorsIEEE Electron Dev. Lett. 1989, 10 pp. 391393.Google Scholar
[2] Farley, C. W., Wang, K. C., Chang, M. F., Asbeck, P. M., Nubling, R. B., Sheng, N. H., Pierson, R. and Sullivan, G. J., “A High Speed Divide-by-4 Frequency Divider Implemented with AlInAs/GalnAs HBTsIEEE Electron Dev. Lett., 1989, 10 pp. 377379.Google Scholar
[3] Mishra, U. K.: “48 GHz AlInAs/GalnAs Heterojunction Bipolar TransistorsIEDM Tech. Digest, Dec. 1988, pp. 873875.Google Scholar
[4] Stanchina, W. E., Rensch, D. B., Jensen, J. F., Mishra, U. K., Karodorian, T. V., Pierce, M. P. and Allen, Y. K., “Processing Techniques for the Fabrication of High Speed AlInAsAnGaAs HBT Circuits” presented at SOTAPOCS XII, Montreal, May 10, 1990.Google Scholar
[5] Fullowan, T. R., Pearton, S. J., Kopf, R. F. and Smith, P. R.: “AlInAs/GalnAs Based Heterojunction Bipolar Transistors Fabricated by Electron Cyclotron Resonance EtchJ. Vac. Sci. Technol. B., May/June 1991.Google Scholar
[6] Jensen, J. F., Stanchina, W. E., Metzger, R. A., Rensch, D. B., Pierce, M. W., Kargodorian, T. V. and Allen, Y. K.: “AlInAs/GalnAs HBT Technology” Proceedings of Custom Integ. Circuit Conf., Boston, May 1990, 12.2.1–12.24.Google Scholar
[7] Jalali, B., Nottenburg, R. N., Chen, Y. K., Sivco, D. and Cho, A. Y., Near-Ideal Lateral Scaling in Abrupt AHnAs/InGaAs Heterostructure Bipolar Transistors prepared by Molecular TransistorsApplied Phys. Lett. 1989, 54 pp. 23332335.Google Scholar
[8] Morizuka, K., Katch, R., Asaka, M., Iizuka, N., Tsuda, K., Obura, M., “Transit time reduction in AlGaAs/GaAs HBT's utilizing velocity overshot in the p-type collector regionIEEE Electron Dev. Lett., 1988 vol. 9, no. 11 pp. 585–7.Google Scholar
[9] Levi, A. F. J., Nottenburg, R. N., Jalali, B., Cho, A. Y. and Panish, M. B., Proc. 2nd Intl. Conf. on InP and Related Materials (IEEE, NJ 1990) pp. 612.Google Scholar
[10] Asbeck, P. M., Farley, C. W., Chang, M. F., Wang, K. C. and Ho, W. J., Proc. 2nd Int. Conf. on InP and Related Materials (IEEE, NJ 1990) pp. 25.Google Scholar
[11] Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A. B., Hobson, W. S. and Kinsella, H. D., J. Vac. Sci. Technol. B 8 596 (1990).Google Scholar