Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T11:32:19.852Z Has data issue: false hasContentIssue false

Effect of Annealing on Microstructure in (Doped and Undoped) Hydrogenated Amorphous Silicon Films

Published online by Cambridge University Press:  07 July 2014

W. Beyer
Affiliation:
Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, D-12489 Berlin, Germany IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
W. Hilgers
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
D. Lennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
F.C. Maier
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
N.H. Nickel
Affiliation:
Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstrasse 5, D-12489 Berlin, Germany
F. Pennartz
Affiliation:
IEK5-Photovoltaik, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
P. Prunici
Affiliation:
Malibu GmbH & Co.KG, Böttcherstrasse 7, D-33609, Bielefeld, Germany
Get access

Abstract

Laser heating and annealing of hydrogenated amorphous silicon (a-Si:H) films is of interest for improved material properties. Due to the variety of possible laser treatments with regard to wavelength, pulse duration, scan time etc., the definition of laser impact on the material is a challenge which we try to approach by comparing properties of laser and oven treated materials. Here we report on the effect of oven heat treatment (up to TA= 575°C) on microstructure and hydrogen content of hydrogenated amorphous silicon films, as detected by measurements of infrared absorption and of effusion of hydrogen as well as of implanted helium. The latter technique has been found to measure isolated voids (cavities) of the size of silicon divacancies and larger. Undoped as well as phosphorus and boron doped plasma-deposited a-Si:H films of various hydrogen content (< 15 at.%) were investigated, including undoped device grade a-Si:H. The results show little indication for void-related microstructure in the as-deposited and annealed state for material with a concentration of silicon bonded hydrogen below 5 at. %. At higher hydrogen concentration, evidence is found that hydrogen out-diffusion due to annealing causes isolated voids in concentrations up to about 1020 cm-3. A possible mechanism for the annealing induced (micro-)void generation is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beyer, W., Phys. Status Solidi (c) 1, 1144 (2004).CrossRefGoogle Scholar
Estreicher, S.K., Weber, J., Derecskei-Kovacs, A. and Marynick, D.S., Phys.Rev. B 55, 5037 (1997).Google Scholar
Gnidenko, A.A., Zavodinsky, V.G., Misiuk, A., Bak-Misiuk, J., Acta Physica Polonica A 109, 353 (2006).CrossRefGoogle Scholar
Shanks, H.R. and Ley, L., J. Appl. Phys. 52, 811 (1981).CrossRefGoogle Scholar
Beyer, W., Einsele, F., in Advanced Characterization Techniques for Thin Film Solar Cells , edited by Abou-Ras, D., Kirchartz, T., Rau, U. (Wiley-VCH, Weinheim, Germany, 2011) p. 449.Google Scholar
Beyer, W., Hilgers, W., Prunici, P., Lennartz, D., Non-Cryst, J.. Solids 358, 2023 (2012).Google Scholar
Beyer, W. and Abo Ghazala, M.S., MRS Symp. Proc. 507, 601 (1998).Google Scholar
Mahan, A.H., Raboisson, P., Williamson, D.I., Tsu, R., Solar Cells 21, 117 (1987).CrossRefGoogle Scholar
Beyer, W., in: Semiconductors and Semimetals 61, Nickel, N.H., ed. (Academic Press, San Diego, 1999) p. 154.Google Scholar
Beyer, W., Solar Energy Materials and Solar Cells 78, 235 (2003).Google Scholar
Beyer, W., Lennartz, D., Prunici, P., Stiebig, H., MRS Symp, . Proc. 1321, 135 (2011).Google Scholar
Beyer, W., Breuer, U., Carius, R., Hilgers, W., Lennartz, D., Maier, F.C., Nickel, N.H., Pennartz, F., Prunici, P. and Zastrow, U., Can. J. Phys. 92 (2014) in print.CrossRefGoogle Scholar
Beyer, W., Hilgers, W., Lennartz, D., Maier, F.C., Nickel, N.H., Pennartz, F., Prunici, P., MRS Symp. Proc. 1536, 175 (2013).CrossRefGoogle Scholar
Street, R.A., Tsai, C.C., Kakalios, J., Jackson, W.B., Philos. Mag. B 56, 305 (1987).CrossRefGoogle Scholar
Tang, X.M., Weber, J., Baer, Y., Finger, F., Phys. Rev. B 41, 7945 (1990).CrossRefGoogle Scholar
Tang, X. M., Weber, J., Baer, Y., Finger, F., Phys. Rev. B 42, 7277 (1990).CrossRefGoogle Scholar
Remes, Z., Vanecek, M., Torres, P., Kroll, U., Mahan, A.H., Crandall, R.S., Non-Cryst, J.. Solids 227-230, 876 (1998).Google Scholar
Cardona, M., Phys. Status Solidi (b) 118, 463 (1983).Google Scholar