Skip to main content
×
Home

Effect of Cryogenic Temperature Deposition of Various Metal Contacts to Bulk, Single-Crystal n-type ZnO

  • Jon Wright (a1), L. Stafford (a2), B. P. Gila (a2), D. P. Norton (a2), S. J. Pearton (a2), Hung-Ta Wang (a3) and F. Ren (a3)...
Abstract
ABSTRACT

The development of reliable and thermally stable Ohmic and Schottky contacts to ZnO is one of the critical issues related to the fabrication of ZnO-based UV light emitters/detectors and field effect transistors. To date, a number of different metallization schemes and surface cleaning procedures prior to metal deposition have been examined for rectifying contacts on n-ZnO. While these reports have shown that low reactive metals such as Au, Ag and Pd form rectifying contacts with Schottky barrier heights in the 0.6-0.8 eV range, the thermal stability of these contacts is usually extremely poor, with degradation occurring even at 60°C for Au/n-ZnO. One approach to achieving increased barrier heights that has proven successful for GaAs, InP, InGaAs and other compound semiconductors is the use of cryogenic deposition temperatures. In this context, we report in this work on the effect of cryogenic temperature metal deposition on the contact properties of Pd, Pt, Ti, and Ni on single-crystal n-type ZnO. Deposition at both room and low temperature produced contacts with Ohmic characteristics for Ti and Ni metallizations. In comparison, both Pd and Pt contacts showed rectifying characteristics after deposition. All rectifying contacts exhibited barrier heights around 1-2 eV and idealities between 1 and 2. Low temperature deposition gave higher resistances in comparison to room temperature deposition for all cases. Larger contacts also corresponded to an increase in resistance. Changes in contact behavior were measured on Pd to anneal temperatures of ∼300°C, showing an increase in barrier height along with a decrease in ideality with increasing temperature. This difference with annealing temperature is in sharp contrast to previous results for Au contacts to ZnO. There were no differences in near-surface stoichiometry for the different deposition temperatures; however low temperature contacts demonstrated some cracking in Pt and Pd, probably due to surface stress.

Copyright
References
Hide All
1. Look D.C., Renlund G.M., Burgener R.H. II and Sizelove J.R., Appl. Phys. Lett. 85, 5269 (2004).
2. Murphy T.E., Chen D.Y., Cagin E. and Philips J.D., J. Vac. Sci. and Technol. B23, 1286 (2005).
3. Zhao J.-L., Li X.-M., Bian J.-M., Yu W.-D. and Zhang C.-Y., J. Crystal Growth 280, 495 (2005).
4. Norton D.P., Heo Y.-W., Ivill M.P., Ip K., Pearton S.J., Chisholm M.F. and Steiner T., Materials Today 7, 34 (2004).
5. Heo Y.-W., Park S.J., Ip K., Pearton S.J. and Norton D.P., Appl. Phys. Lett. 83, 1128 (2003).
6. Kim S.-H., Kim H.-K. and Seong T.-Y., Appl. Phys. Lett. 86, 112101 (2005).
7. Polyakov A.Y., Smirnov N.B., Kozhukara E.A., Vdovin V.I., Ip K., Heo Y.W., Norton D.P. and Pearton S.J., Appl. Phys. Lett. 83, 1575 (2003).
8. von Wenckstern H., Kaidashev E.M., Lorenz M., Hockmuth H., Biehne G., Lenzner J., Gottschalch V., Pickenhain R. and Grundmann M., Appl. Phys. Lett. 84, 79 (2004).
9. Coppa B.J., Davis R.F., Nemanich R.J., Appl. Phys. Lett. 82, 400 (2003).
10. Coppa B.J., Fulton C.C., Kiesel S.M., Davis R.F., Pandarinath C., Burnette J.E., Nemanich R.J. and Smith D.J., J. Appl. Phys. 97, 103517 (2005).
11. Kim S.-H., Kim H.-K. and Seong T.-Y., Appl. Phys. Lett. 86, 022101 (2005).
12. Grossner U., Gabrielsen S., Børseth T.M., Grillenberger J., Kuznetsov A.Y. and Svensson B.G., Appl. Phys. Lett. 85, 2259 (2004).
13. Petrie W.T. and Vohs J.M., J. Chem. Phys. 101, 8098 (1994).
14. Coppa B.J., Fulton C.C., Hartlieb P.J., Davis R.F., Rodriguez B.J., Shields B.J. and Nemanich R.J., J. Appl. Phys. 95, 5856 (2004).
15. Fabricius H., Skeetrup T. and Bisgaard P., Appl. Optics 25, 2764 (1986).
16. Liang S., Sheng H., Liu Y., Huo Z., Lu Y. and Shen H., J. Crystal Growth 225, 110 (2003).
17. Ohashi N., Tanaka J., Ohgaki T., Haneda H., Ozawa M. and Tsurumi T., J. Mater. Res. 17, 1529 (2002).
18. Auret F.D., Goodman S.A., Legodi M.J., Meyer W.E. and Look D.C., Appl. Phys. Lett. 80, 1340 (2002).
19. Neville R.C. and Mead C.A., J. Appl. Phys. 41, 3795 (1970).
20. Lee H.J., Anderson W.A., Hardtdegen H. and Luth H., Appl. Phys. Lett., 63, 1939 (1993).
21. Clark S.A., Wilks S. P., Kestle A., Westwood D.I., and Elliot M., Surface Sic., 352–354, 850 (1996).
22. Wang A. Z. and Anderson W. A., Appl. Phys. Lett. 66, 1963 (1995).
23. Shi Z. Q. and Anderson W. A., J.Vac. Sci. Technol. A 11, 985 (1993).
24. Shi Z. Q. and Anderson W. A., J. Appl. Phys. 72, 3803 (1992).
25. Tung R. T., J.Appl.Phys. 73, 7993 (1993).
26. Schroder D. K., Semiconductor Material and Device Characterization, (Wiley and Sons, NY 1990).
27. CRC Handbook of Chemistry and Physics,70th Ed, ed. Weast R.C. and Lide D.R. (CRC Press, Boca Raton, FL 1990), page E71.
28. Metal-Semiconductor Contacts, Rhoderick E.H. and Williams R.H. (Oxford Science Publishers, Oxford 1988).
29. Cammack D. S., McGregor S. M., McChesney J.J., Clark S.A., Dunstan P.R., Burgess S.R., Wilks S.P., Peiro F., Ferrer J.C., Cornet A., Morante J.R., Kestle A., Westwood D.I., and Elliott M., Appl. Surface Science 123/123, 501 (1998).
30. Wright J.S., Khanna R., Voss L. F., Stafford L., Gila B.P., Norton D. P., Pearton S. J., Wang H. T., Jang S., Anderson T., Chen J.J.,Kang B. S., Ren F., Roche J. La and Ip K., Appl. Surf. Sci (submitted).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 37 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.