Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T23:55:16.503Z Has data issue: false hasContentIssue false

The Effect of Hydrogen Carrier Gas on the Morphological Evolution and Material Properties of GaN on Sapphire

Published online by Cambridge University Press:  10 February 2011

T. B. Ng
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. H. Crawford
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

In-situ optical reflectance is used to monitor the morphological evolution of the two-step GaN growth on sapphire. The amount of H2 carrier gas used in the growth is observed to strongly influence the morphological evolution of the low temperature buffer layer and the subsequent high temperature nucleation behavior, which in turn affects the structural and electrical properties of the GaN epitaxial films. The optical reflectance transients correlate with the sizes and distributions of nuclei as observed by AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y. Appl. Phys. Lett., vol.48, p. 353, 1986.10.1063/1.96549Google Scholar
2. Amano, H., Akasaki, I., Hiramatsu, K., Koide, N., and Sawaki, N. Thin Solid Film, vol.163, p. 415, 1988.Google Scholar
3. Hiramatsu, K., Itoh, S., Amano, H., Akasaki, I., Kuwano, N., Shiraishi, T., and Oki, K. J. Crystal Growth, vol.115, p. 628, 1991.Google Scholar
4. Nakamura, S., Senoh, M., and Mukai, T. Jpn. J. Appl. Phys., vol.30, p. L1708, 1991.10.1143/JJAP.30.L1708Google Scholar
5. Wickenden, A., Wickenden, D., and Kistenmacher, T. J. Appl. Phys., vol.75, p. 5367, 1994.Google Scholar
6. George, T., Pike, W., Khan, M., Kuznia, J., and Chang-Chien, P. J. Electron. Mat., vol.24, p. 241, 1995.10.1007/BF02659682Google Scholar
7. Wu, X., Kapolnek, D., Tarsa, E., Heying, B., Keller, S., Keller, B., Mishra, U., DenBaars, S., and Speck, J. Appl. Phys. Lett., vol.68, p. 1371, 1996.Google Scholar
8. Nakamura, S. Jpn. J. Appl. Phys., vol.30, p. 1620, 1991.Google Scholar
9. Breiland, W. and Evans, G. J. Electrochem. Soc., vol.138, p. 1806, 1991.Google Scholar
10. Nakamura, S. Jpn. J. Appl. Phys., vol.30, p. L1705, 1991.Google Scholar
11. Doverspike, K., Rowland, L., Gaskill, D., and Freitas, J.A. Jr J. Electron. Mat., vol.24, p. 269, 1995.Google Scholar
12. Hersee, S., Ramer, J., Zheng, K., Kranenberg, C., Malloy, K., Banas, M., and Goorsky, M. J. Electron. Mat., vol.24, p. 1519, 1995.Google Scholar
13. Sasaki, T. and Matsuoka, T. J. Appl. Phys., vol.77, no. 1, p. 192, 1995.Google Scholar