Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-20T00:54:13.787Z Has data issue: false hasContentIssue false

Effect of Oxygen Implantation Conditions on Buried Si02 Layer Formation using a Multiple Step Process

Published online by Cambridge University Press:  25 February 2011

F. Namavar
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA
E. Cortesi
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA
R.F. Pinizzotto
Affiliation:
University of North Texas, Dentón, TX
H. Yang
Affiliation:
University of North Texas, Dentón, TX
Get access

Abstract

We have studied the effect of implantation temperature, dose step, and total dose on the buried Si02 layer formed with a multiple low dose oxygen implantation process. Furthermore, we have produced a continuous, high quality buried SiO2 layer about 1500 Å thick with a dose of only 7 × 1017 0+/cm2 at 160 keV. The thin SiO2 layer is important not only because of the possible economic advantages of reduced dose, but also because a thinner oxide layer is more radiation hard.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pinizzotto, R.F., Mat. Res. Soc. Symp. Proc. 27, 265 (1984).Google Scholar
2 Burnham, M.E. and Wilson, S.R., in Advanced Application of Ion Implantation SPIE 530, (1985).Google Scholar
3 Hemment, P.L.F., Mat. Res. Soc. Symp. Proc. 53, 207 (1986).Google Scholar
4 Reeson, K.J., Robinson, A.K., Hemment, P.L.F., Marsh, C.D., Christensen, K.N., Booker, G.R., Chater, R.J., Kilner, J.A., Harbeke, G., Steigmeir, E.F., and Celler, G.K., Microelectronic Eng. 8, 163 (1988).Google Scholar
5 Namavar, F., Budnick, J.I., Sanchez, F.H., and Hayden, H.C., Mat. Res. Soc. Symp. Proc. 45, 317 (1985).Google Scholar
6 Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63, 4932 (1988).Google Scholar
7 Cheek, T.F. Jr., and Chen, D., Mat. Res. Soc. Symp. Proc. 107, 53 (1988).Google Scholar
8 Namavar, F., Cortesi, E., and Sioshansi, P., in Selected Topics in Electronic Materials, edited by Appleton, B.R. et al. , (Mat. Res. Soc. Extended Abstracts, Pittsburgh, PA, 1988), 109.Google Scholar
9 Namavar, F., Cortesi, E., and Sioshansi, P., Mat. Res. Soc. Symp. Proc. 128, 623 (1989).Google Scholar
10 Margail, J., Stoemenos, J., Jaussaud, C., and Bruel, M., Appl. Phys. Lett. 54, 526 (1989).Google Scholar
11 Buchanan, B.L., in VLSI Handbook, edited by Einspruch, N.G., (Academic Press, Inc., Orlando, FL, 1985), 571.Google Scholar
12 Namavar, F., Buchanan, B.L., Cortesi, E., and Sioshansi, P., Mat. Res. Soc. Symp. Proc. 147, 235 (1989).Google Scholar
13 Hemment, P.L.F., Reeson, K.J., Kilner, J.L., Chater, R.J., Marsh, C., Booker, G.R., Celler, G.K., and Stoemenos, J., Vacuum 36, 877 (1986).Google Scholar
14 White, A.E., Short, T.K., Pfeiffer, L.N., West, K.W., and Batstone, J.L., Mat. Res. Soc. Symp. Proc. 74, 585 (1987).Google Scholar