Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T19:56:22.418Z Has data issue: false hasContentIssue false

Effect of oxygen on nanoscale indentation-induced phase transformations in amorphous silicon

Published online by Cambridge University Press:  31 January 2011

Simon Ruffell
Affiliation:
simon.ruffell@anu.edu.au, Australian National University, Canberra, Australian Capital Territory, Australia
Jim Williams
Affiliation:
jsw109@rsphysse.anu.edu.au, Australian National University, Canberra, Australian Capital Territory, Australia
Get access

Abstract

Ion-implantation has been used to introduce oxygen concentration-depth profiles into nominally oxygen-free amorphous silicon (a-Si). The effect of O concentrations in excess of 1018 cm−3 on the formation of high pressure crystalline phases (Si-III and Si-XII) during indentation unloading has been studied. By examination of unloading curves and post-indent Raman micro-spectroscopy O is found to inhibit the so-called pop-out event during unloading and, therefore, the formation of the crystalline phases. Furthermore, at high O concentrations (> 1021 cm−3) the formation of these phases is reduced significantly such that under indentation conditions used here the probability of forming the phases is reduced to almost zero. We suggest that the bonding of O with Si reduces the formation of Si-III/XII during unloading through a similar mechanism to that of oxygen-retarded solid phase crystallization of a-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ziegler, J. F., Biersack, J. P., The stopping and range of ions in matter (SRIM). 2003.Google Scholar
2. Bradby, J. E., Williams, J. S., Wong-Leung, J., Swain, M. V., Munroe, P., Journal of Materials Research 16, 1500 (2001).10.1557/JMR.2001.0209Google Scholar
3. Domnich, V., Gogotsi, Y., Dub, S., Applied Physics Letters 76 (16), 2214 (2000).10.1063/1.126300Google Scholar
4. Pharr, G. M., Oliver, W. C., Cook, R. F., Kirchner, P. D., Kroll, M. C., et al., Journal of Materials Research 7, 961 (1992).10.1557/JMR.1992.0961Google Scholar
5. Ruffell, S., Bradby, J. E., Williams, J. S., Applied Physics Letters 89(9), 091919 (2006).10.1063/1.2339039Google Scholar
6. Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A., Swain, M.V., Journal of Materials Research 14, 2338 (1999).10.1557/JMR.1999.0310Google Scholar
7. Ruffell, S., Bradby, J. E., Williams, J. S., Munroe, P., Journal of Applied Physics 102, 063521 (2007).10.1063/1.2781394Google Scholar
8. Liaw, H. M., Semiconductor Instruments 2, 71 (1979).Google Scholar
9. This anneal converts the a-Si to a relaxed state which is required for subsequent phase transformation during indentation.Google Scholar
10. Ruffell, S., Vedi, J., Bradby, J. E., Williams, J. S., Haberl, B., Journal of Applied Physics 105, 083520 (2009).10.1063/1.3097752Google Scholar
11. Ruffell, S., Bradby, J. E., Williams, J. S., Munoz-Paniagua, D., Tadayyon, S. , et al., Nanotechnology 20, 135603 (2009).10.1088/0957-4484/20/13/135603Google Scholar
12. Deb, Sudip K., Wilding, Martin, Somayazulu, Maddury, McMillan, Paul F., Letters to Nature 414, 528 (2001).10.1038/35107036Google Scholar
13. Shimomura, O., Minomura, S., Sakai, N., Asaumi, K., Tamura, K., et al., Philosophical Magazine 29, 547 (1974).10.1080/14786437408213238Google Scholar
14. Haberl, B, Bradby, J.E., Ruffell, S., Williams, J.S., Munroe, P, Journal of Applied Physics 100, 013520 (2006).10.1063/1.2210767Google Scholar
15. Williams, J. S., Elliman, R. G., Physical Review Letters 51(12), 1069 (1983).10.1103/PhysRevLett.51.1069Google Scholar
16. Kennedy, E. F., Csepregi, L., Mayer, J. W., Sigmon, T. W., Journal of Applied Physics 48(10), 4241 (1977).10.1063/1.323409Google Scholar