Hostname: page-component-54dcc4c588-54gsr Total loading time: 0 Render date: 2025-09-12T02:58:58.434Z Has data issue: false hasContentIssue false

Effects of Arsenic Doping on the Solidification Dynamics ofPulsed-Laser-Melted Silicon

Published online by Cambridge University Press:  25 February 2011

Michael O. Thompson
Affiliation:
On leave Dept. of Materials Science Cornell University, Ithaca,NY 14853
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
J. Y. Tsao
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

The effects of arsenic doping on the solidification dynamics during pulsedmelting of silicon have been studied using the transient conductancetechnique. At As concentrations below 1 at.%, the incorporation of As intothe Si lattice results in negligible differences in the solidificationdynamics. Between 2 and 7 at.% As, however, the interface velocity isdramatically modified as the liquid-solid interface crosses the Ascontaining region. These velocity changes are consistent with a reducedmelting temperature for Si-As alloys. For concentrations of 11 at.% As, thedepression in the melting temperature is sufficient to allow the surface tosolidify while considerable melt remains buried within the sample. At 16at.%, the melting temperature is drastically reduced and internal nucleationof melt occurs prior to normal surface melting.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Poate, J. M. in Laser and Electron Beam Interactions with Solids, edited by Appleton, B. R. and Celler, G. K., (North Holland, New York, 1981), p. 121.Google Scholar
2. White, C. W., Appleton, B. R. and Wilson, S. R., in Laser Annealing of Semiconductors. Poate, J. M., Mayer, J. W., Eds. (Academic Press, New York, 1982).Google Scholar
3. Jackson, K. A., in Surface Modification and Alloying bv Laser. Ion and Electron Beams, edited by Poate, J. M., Foti, G. and Jacobson, D. C. (Plenum, New York, 1983), Chapter 3.Google Scholar
4. Aziz, M. J., J. Appl. Phys. 53, 1158 (1982).Google Scholar
5. Galvin, G. J., Mayer, J. W. and Peercy, P. S., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Fan, J. C. C. and Johnson, N. M. (North Holland, New York, 1984), p. 111.Google Scholar
6. Thompson, Michael O. and Galvin, G. J., in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W. L. and Lemons, R. A., (North Holland, New York, 1983), p. 57.Google Scholar
7. Campisano, S. U., Jacobson, D. C., Poate, J. M., Cullis, A. G. and Chew, N. G., Appl. Phys. Lett, 45, 1216 (1984).Google Scholar
8. Cullis, A. G., Webber, H. C. and Bailey, P., J. Phys. E. 12, 688 (1979).Google Scholar
9. Thompson, Michael O., Ph. D Thesis, Cornell university, Ithaca, NY, 1984.Google Scholar
10. Auston, D. H., Surko, C.M., Venkatesan, T. N. C., Slusher, R. E. and Golovchenko, J. A., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
11. Thompson, Michael O., Galvin, G. J., Mayer, J. W., Peercy, P. S., Poate, J. M., Jacobson, D. C., Cullis, A. G. and Chew, N. G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar