Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T03:49:00.569Z Has data issue: false hasContentIssue false

Effects of High Magnetic Field and Tensile Stress on Martensitic Transformation Behavior and Microstructure At 4 K in Fe-Ni-C Alloys

Published online by Cambridge University Press:  21 February 2011

H. Ohtsuka
Affiliation:
E-mail:ohtsuka@nrim.go.jp
K. Nagai
Affiliation:
National Reserch Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN.
S. Kajiwara
Affiliation:
National Reserch Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN.
H. Kitaguchi
Affiliation:
National Reserch Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN.
M. Uehara
Affiliation:
National Reserch Institute for Metals, 1-2-1 Sengen, Tsukuba, Ibaraki 305, JAPAN.
Get access

Abstract

Effects of high magnetic field and tensile stress on martensitic transformation behavior and microstructure at 4 K have been studied in Fe-31Ni-0.4C and Fe-27Ni-0.8C shape memory alloys. It was found that the critical magnetic field to induce martensitic transformation is between 7.5 T and 10 T. In the case of Fe-27Ni-0.8C, martensitic transformation is stress-induced at lower level of stress in magnetic field than in the case when no magnetic Field is applied. The amount of martensite formed by increasing the magnetic field under constant stress is larger than that formed by increasing the stress in the constant magnetic field.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kaufman, L. and Cohen, M., Prog. Met. Phys. 7, 165 (1958).Google Scholar
2 Patel, J.R. and Cohen, M., Acta Metall. 1, 531 (1953).Google Scholar
3 Sadovsky, V.D., Smirnov, L.V., Fokina, YE.A., Malinen, P.A. and Soroskin, I.P, Fiz. metal, metalloved. 24, 918 (1967).Google Scholar
4 Fokina, YE.A., Smirnov, L.V., Olesov, V.N., Schastlivtsev, V.M. and Sadovsky, V.D., Fiz. metal, metalloved. 51, 160(1981).Google Scholar
5 Kakeshita, T., Shimizu, K., Sakakibara, T., Funada, S. and Date, M., Trans. JIM, 24, 748(1983).Google Scholar
6 Kakeshita, T., Shimizu, K., Funada, S. and Date, M., Acta Metall. 33, 1381 (1985).Google Scholar
7 Kakeshita, T., Shimizu, K., Kijima, S., Yu, Z. and Date, M., Trans. JIM, 26, 630 (1985).Google Scholar
8 Kakeshita, T. and Shimizu, K., Proc. ICOMAT-86. Jpn. Inst. Metals, Sendai, (1986), 230.Google Scholar
9 Kakesha, T., Furikado, S., Shimizu, K., Kijima, S. and Date, M., Trans. JIM, 27, 477 (1986).Google Scholar
10 Kakeshta, T., Shirai, H., Shimizu, K., Sugiyama, K., Hazumi, K. and Date, M., Trans. JIM, 28, 891 (1987).Google Scholar
11 Kakeshita, T., Shirai, H., Shimizu, K., Sugiyama, K., Hazumi, K. and Date, M., Trans. JIM 29, 553 (1988).Google Scholar
12 Kakeshita, T., Shimizu, K., Maki, T., Tamura, I., Kijima, S. and Date, M., Scripta Metall., 19, 973(1985).Google Scholar
13 Kakeshita, T., Shimizu, K., Ono, M. and Date, M., Materials Trans. JIM, 33, 461 (1992).Google Scholar
14 Kakeshita, T., Kuroiwa, K., Shimizu, S., Ikeda, T., Yamagishi, A. and Date, M., Materials Trans. JIM, 34, 415(1993).Google Scholar
15 Kakeshita, T., Kuroiwa, K., Shimizu, S., Ikeda, T., Yamagishi, A. and Date, M., Materials Trans. JIM, 34, 423(1993).Google Scholar
16 Emura, S., Fujita, K., Kurita, Y. and Shibata, K., Proc. of Int. Conf. on Stainless Steels, 1991,Chiba, ISIJ., p.441.Google Scholar
17 Kurita, Y., Fujita, K. and Shibata, K., Annual Report of the Engineering Research Inst. 8 Faculty of Engineering, Univ. of Tokyo, 51 167(12992).Google Scholar
18 Kurita, Y., Emura, S., Fujitak, K., Nagai, K., Ishikawa, K. and Shibata, K., Proc. of ICOMAT-92. Monterey Institute for Advanced Studies, 1993, Monterey, California, U.S.A. p. 457.Google Scholar
19 Kajiwara, S. and Kikuchi, T., Acta Metall. Mater., 38, 847 (1990).Google Scholar