Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T23:06:51.959Z Has data issue: false hasContentIssue false

Effects of Surface Treatments on the Photoluminescence of Porous Si and a Suggested Mechanism for the Photoluminescence

Published online by Cambridge University Press:  28 February 2011

Masao Yamada
Affiliation:
Basic Process Development Division, Fujitsu LTD., 1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Kazuaki Kondo
Affiliation:
Basic Process Development Division, Fujitsu LTD., 1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Takae Sasaki
Affiliation:
Basic Process Development Division, Fujitsu LTD., 1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Akira Takazawa
Affiliation:
Basic Process Development Division, Fujitsu LTD., 1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Tetsuro Tamura
Affiliation:
Basic Process Development Division, Fujitsu LTD., 1015 Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan
Get access

Abstract

We report how vacuum annealing and dry oxidation affect the photoluminescence (PL) properties of porous Si. Vacuum annealing weakens the intensity of as-prepared porous Si, whereas, oxidation using dry oxygen at 5 Torr increases the intensity remarkably above 800 °c. Blue shifts as large as 100 nm are also observed for temperatures between 800 °C and 1000 °c. The photoluminescence decay patterns of both as-prepared and dry-oxidized porous Si excited by a nitrogen laser pulse are not exponential, but are fitted well by two exponential decays with lifetimes ranging from a few nanoseconds to over 100 nanoseconds. Further, those decay patterns do not change with changing excitation power by more than three orders of magnitude. These studies suggest that (l) hydrogen termination (with some fluorine termination) on the porous Si surface is not always necessary to get photoluminescence, (2) low surface defect densities are essential to increase the photoluminescence intensity, and (3) the radiative recombination path is not a direct interband transition, but, due to quantum size effects, it may go through some luminescence centers lying In the widened band gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
2. Koshida, N. and Koyama, H., Jpn. J. Appl. Phys., 30, L1221 (1991).Google Scholar
3. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Waber, J., and Cardona, M., Solid State Commun. 81, 307 (1992).Google Scholar
4. Perez, J. M., Villalobos, J., McNeil, P., Prasad, J., Cheek, R., Kelber, J., Estrera, J. P., Stevens, P. D., and Glosser, R., Appl. Phys. Lett. 61, 563 (1992).Google Scholar
5. Prokes, S. M., Freitas, J. A. Jr, and Searson, P. C., Appl. Phys. Lett., 60, 3295 (1992).Google Scholar
6. Vasquez, R. P., Fathauer, R. W., George, T., Ksendzov, A., and Lin, T. L., Appl. Phys. Lett. 60, 1004 (1992).Google Scholar
7. Tsai, C., Li, K. -H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K., and White, J. M., Appl. Phys. Lett., 59, 2814 (1991).Google Scholar
8. Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
9. Furukawa, S. and Matsumoto, N., Phys. Rev. B31, 2114 (1985).Google Scholar
10. Yamada, M. and Kondo, K., Jpn. J. Appl. Phys., 31, L993 (1992).Google Scholar
11. Ito, T., Ohta, T., and Hiraki, A., Jpn. J. Appl. Phys., 31, LI (1992).Google Scholar
12. Shih, S., Tsai, C., Li, K. -H., Jung, K. H., Campbell, J. C., and Kwong, D. L., Appl. Phys. Lett., 60, 633 (1992).Google Scholar
13. Ookubo, N., Ono, H., Ochiai, Y., Mochizuki, Y., and Matsui, S., Appl. Phys. Lett., 61, 940 (1992).Google Scholar
14. Petrova-Koch, V., Muschik, T., Kux, A., Heyer, B. K., Koch, F., and Lehmann, V., Appl. Phys. Lett., 61, 943 (1992).Google Scholar
15. Chabai, Y. J., Higashi, G. S., Raghavachari, K., and Burrows, V. A., J. Vac. Sci. Technol. A7, 2104 (1989).Google Scholar
16. Suemune, I., Noguchi, N., and Yamanishi, M., Jpn. J. Appl. Phys. 31, L494 (1992).Google Scholar
17. Fang, C. J., Lay, L., Shanks, H. R., Gruntz, K. J., and Cardona, M., Phys. Rev. B22, 6140 (1980).Google Scholar
18. Lucovsky, G., Nemanich, R. J., and Knights, J. C., Phys. Rev. B19, 2064 (1979).Google Scholar
19. Polland, W. B. and Lucovsky, G., Phys. Rev. B26, 3127 (1982).Google Scholar
20. Ito, T., Yasumatsu, T., Watanabe, H., and Hikaki, A., Jpn. J. Appl. Phys., 29, L201 (1990).Google Scholar
21. Furukawa, S. and Miyasato, T., Phys. Rev. B38, 5726 (1988).Google Scholar
22. Gardelis, S., Rimmer, J. S., Dawson, P., Hamilton, B., Kubiak, R. A., Whall, T. E., and Parker, E. H. C., Appl. Phys. Lett., 59, 2118 (1991).Google Scholar
23. Vial, J. C., Bsiesy, A., Gaspard, F., Rerino, H., Ligeon, M., Muller, F., Romestain, R., and Macfarlane, R. H., Phys. Rev. B45, 14171 (1992).Google Scholar
24. Miyoshl, T., Lee, K. -S., and Aoyagi, Y., Jpn. J. Appl. Phys., 31, 2470 (1992).Google Scholar
25. Tishler, M. A., Collins, R. T., Stathis, J. H., and Tsang, J. C., Appl. Phys. Lett., 60, 639 (1992).Google Scholar
26. Pearsall, T. P., Adams, J. C., Wu, J. E., Nosho, B. Z., Aw, C., and Patton, J. C., J. Appl. Phys., 71, 4470 (1992).Google Scholar
27. Xie, Y. H., Wilson, W. L., Ross, F. M., Mucha, J. A., Fitzgerald, E. A., Macaulay, J., and Harris, T. D., J. Appl. Phys., 71, 2403 (1992).Google Scholar
28. Matsumoto, T., Daimon, M.. Futagi, T., and Mimura, H., Jpn. J. Appl. Phys., 31, L619 (1992).Google Scholar
29. Piazza, R., Bellini, T., and Degiorgio, V., Phys. Rev. B38, 7223 (1988).Google Scholar
30. Yamada, M., Takazawa, A., and Tamura, T., Jpn. J. Appl. Phys. 31, L1451 (1992).Google Scholar
31. Takagl, H., Ogawa, H., Yamazakl, Y., Ishizaki, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).Google Scholar
32. Osaka, Y., Tsunetomo, K., Toyomura, F., Myoren, H., and Kohno, K., Jpn. J. Appl. Phys., 31, L365 (1992).Google Scholar