Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T00:07:45.149Z Has data issue: false hasContentIssue false

Electrical Characteristics of TaOxNy/ZrSixOy Stack Gate Dielectric for MOS Device Applications

Published online by Cambridge University Press:  21 March 2011

Hyungsuk Jung
Affiliation:
Department of Materials Science and Engineering Kwangju Institute of Science and Technology #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA Electronic mail: hwanghs@kjist.ac.kr
Hyundoek Yang
Affiliation:
Department of Materials Science and Engineering Kwangju Institute of Science and Technology #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA Electronic mail: hwanghs@kjist.ac.kr
Kiju Im
Affiliation:
Department of Materials Science and Engineering Kwangju Institute of Science and Technology #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA Electronic mail: hwanghs@kjist.ac.kr
Hyunsang Hwang
Affiliation:
Department of Materials Science and Engineering Kwangju Institute of Science and Technology #1, Oryong-dong, Puk-gu, Kwangju, 500-712, KOREA Electronic mail: hwanghs@kjist.ac.kr
Get access

Abstract

This letter describes a unique process for the preparation of high quality tantalum oxynitride (TaOxNy) with zirconium silicate (ZrSixOy) as an interfacial layer for use in gate dielectric applications. Compared with conventional native silicon oxide and oxynitride as an interfacial layer, tantalum oxynitride (TaOxNy) MOS capacitors using zirconium silicate (ZrSixOy) as an interfacial layer exhibit lower leakage current levels at the same equivalent oxide thickness. We were able to confirm TaOxNy/ZrSixOy stack structure by auger electron spectroscopy (AES) and transmission electron microscope (TEM) analysis. The estimated dielectric constant of TaOxNy and ZrSixOywere approximately 67 and 7, respectively. The zirconium silicate is a promising interfacial layer for future high-k gate dielectric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 The International Technology Roadmap for Semiconductor (semiconductor Industry Association, 1999).Google Scholar
2 Lu, Q., Park, D., Kalnitsky, A., Chang, C., Cheng, C. C., Tay, S. P. King, T. J. and Hu, C., IEEE Electron Device Lett., 19, 341 (1998).Google Scholar
3 Kizilyalli, I. C., Huang, R. Y. S. and Roy, P. K., IEEE Electron Device Lett., 19, 423 (1998).Google Scholar
4 Wilk, G. D., Wallace, R. M., and Anthony, J. M. J. Appl. Phys. 87, No.1, (2000)Google Scholar
5 Hubbard, D. J., and Schlom, D. G, J. Mater. Res., 2757 (1996)Google Scholar
6 Lin, J., Massaki, N., Tsukune, A. and Yamada, M., Appl. Phys. Lett., 74, 2370 (1999).Google Scholar
7 Jung, H., Im, K., and Hwang, H.. Appl. Phys. Lett. 76, 3630 (2000)Google Scholar
8 Henson, W. K., Ahmed, K. Z., Vogel, E. M., Hauser, J. R., Wortman, J. J., Venables, R. D., Xu, M., and Venable, D., IEEE Electron Device Lett., 20, 179 (1999).Google Scholar