Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T07:27:27.109Z Has data issue: false hasContentIssue false

Electric-Field Dependence of Photocarrier Properties in the Steady-State Photocarrier Grating Experiment

Published online by Cambridge University Press:  21 March 2011

R. Brüggemann
Affiliation:
Institut für Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg Germany Email: rudi.brueggemann@uni-oldenburg.de
R.I. Badran
Affiliation:
Physics Department, The Hashemite University, P.O. Box 150459, Zarqa, Jordan Email: rbadran@hu.edu.jo
Get access

Abstract

We apply an experimental variation of the steady-state photocarrier grating technique by monitoring the photoresponse at higher electric fields and thus changing from diffusion to drift determined transport. Evaluation of the field-dependen experimental data is achieved with the analysis by Abel et al. [C.-D. Anel, G.H. Bauer and W. Bloss, Philos. Mag. B 72, 551 (1995)]. We study the photoelectronic properties of microcrystalline silicon samples and deduce the minority carrier diffusion length. From the variation in electric field the trapped charge density, responsible for charge neutrality under illumination, can also be determined. Thus additional information is gained which can be related to the density of states in the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritter, D. and Weiser, K., Phys. Rev. B 34, 9031 (1986).Google Scholar
2. Ritter, D., Zeldov, E. and Weiser, K., J. Appl. Phys. 62, 4563 (1987).Google Scholar
3. Balberg, I., Delahoy, A.E., and Weakliem, H.A., Appl.Pyhs. Let, 52, 992 (1988).Google Scholar
4. Hunin, J., Sauvain, E. and Shah, A.V., IEEE Trans. Electron Devices 36, 2789 (1989).Google Scholar
5. Balberg, I., in Amorphous Silicon Technology - 1992, edited by Thomson, M. J., Hamakawa, Y., LeComber, P.G., Madan, A., and Schiff, E. A., MTS Symposia Proceedings No. 258 (Materials Research Society, Pittsburgh, 1992). p. 693.Google Scholar
6. Pipoz, P., Sauvain, E., Hubin, J., and Shah, A., as in [4], p. 777.Google Scholar
7. Abel, C.D. and Bauer, G.H., Progress in Photovoltaics: Research and Appl., 1 (1993) 269.Google Scholar
8. Abel, C.D. and Bauer, G.H., and Bloss, W., Philos. Mag. B 72, 551 (1995).Google Scholar
9. Brüggemann, R., Kleider, J.P., Longeaud, C., Mencaraglia, D., Guillet, J., Bourée, J.E. and Niikura, C., J. Non-Cryst. Solids, 266–269, 258 (2000).Google Scholar
10. Brüggemann, R., Kleider, J.P., Longeaud, C., Proc. 16th European Photovoltaic Solar Energy Conference, ed. Scheer, H.et al., James & James Scient. Publ. London, 2000, p. 645.Google Scholar
11. Okur, S., Günes, M., Göktas, O., Finger, F. and Carius, R., J. Mat. Science: Materials in Electronics, 14, 729 (2003).Google Scholar
12. Kocka, J., Fejfar, A., Mates, T., Fojtík, P., Dohnalová, K., Luterová, K., Stuchlík, J. 1, Stuchíková, H., Pelant, I., Rezek, B., Stemmer, A. and Ito, M., Phys. status solidi (c) 1, 1097 (2004).Google Scholar
13. Brummack, H., Brüggemann, R., Wanka, H.N., Hierzenberger, A. and Schubert, M.B., Proc 26th IEEE Photovoltaic Specialists Conf. (IEEE, Piscataway 1997)p. 679.Google Scholar