Skip to main content
×
×
Home

Electrochemical Oxidation of Phenol in Water Solutions Using Nanocrystalline Boron-Doped Diamond Film Anode

  • Jorge Arturo Lara Viera (a1), Manoj K. Ram (a2) (a3), Pedro Villalba (a3), Mikhail Ladanov (a2) (a3) and Ashok Kumar (a1) (a3)...
Abstract

The present paper reports the utilization of a boron-doped nanocrystalline diamond film (BDD) in electrochemical oxidization (ECO) process of organic phenol compound in 0.1 M H2SO4 water solution. The nano BDD films were synthesized by microwave plasma chemical vapor deposition (MWPCVD), and then characterized by Raman spectroscopy and SEM before and after the electrochemical oxidation treatment. For the ECO treatment performed to the test sample solution, an observation of the first and the last voltammetric plots exhibited a qualitatively differences between the two plots where the first one represent the initial concentration and the last one the signal produced by the organic solution after treatment. UV-Vis analysis through the application of a standard calibration curve, quantitatively confirmed the composition of phenol remaining in the sample solution subdued to the ECO treatment.

Copyright
References
Hide All
1.Holt, K. B., “Undoped diamond nanoparticles: origins of surface redox chemistry,” Physical Chemistry Chemical Physics, vol. 12, no. 9, p. 2048, 2010.
2.Gandini, D., Mahe, E., Michaud, P. A., Haenni, W., Perret, A., and Comninellis, Ch., “Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment”, Journal of Appl. Electrochem., vol. 30, p. 13451350, 2000.
3.Ager, J. W., Walukiewicz, W., McCluskey, M., Plano, M. A., and Landstrass, M. I., “Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition,” Applied Physics Letters, vol. 66, no. 5, p. 616, 1995.
4.Yano, T., Tryk, D. A., Hashimoto, K., and Fujishima, A., “Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution,” Journal of The Electrochemical Society, vol. 145, no. 6, pp. 18701876, Jun. 1998.
5.Chengyao, G., Ming, C., Xiaowei, L., Cuiping, L., “Electroanalytical Applications of Boron Doped Diamond Electrode,” Progress in Chemistry, Vol. 23, no. 6, pp. 951962, 2011.
6.Filik, J. et al. ., “Raman spectroscopy of nanocrystalline diamond: An ab initio approach,” Physical Review B, vol. 74, no. 3, p. 035423, Jul. 2006.
7.Veres, M., Koós, M., Tóth, S., and Himics, L., “Sp2 carbon defects in nanocrystalline diamond detected by Raman spectroscopy,” IOP Conference Series: Materials Science and Engineering, vol. 15, p. 012023, Nov. 2010.
8.Panizza, M., Michaud, P.-A., Iniesta, J., Comninellis, C., and Cerisola, G., “Electrochemical oxidation of phenol at boron-doped diamond electrode. Application to electro-organic synthesis and wastewater treatment,” Annali Di Chimica, vol. 92, no. 10, pp. 9951006, Oct. 2002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 5 *
Loading metrics...

Abstract views

Total abstract views: 178 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd April 2018. This data will be updated every 24 hours.