Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T05:07:09.274Z Has data issue: false hasContentIssue false

Electrochemical Synthesis of Multi-Material Nanowires as Building Blocks for Functional Nanostructures

Published online by Cambridge University Press:  17 March 2011

David J. Pena
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Baharak Razavi
Affiliation:
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
Peter A. Smith
Affiliation:
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
Jeremiah K. Mbindyo
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Michael J. Natan
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Theresa S. Mayer
Affiliation:
Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802
Thomas E. Mallouk
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
Christine D. Keating*
Affiliation:
Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
*
*Author to whom correspondence should be addressed at keating@chem.psu.edu
Get access

Abstract

Nanostructures are electrochemically deposited into alumina or polycarbonate templates resulting in monodisperse, anisotropic particles with a range of tunable sizes. These particles have been synthesized with diameters of 20–250 nm and with lengths of 1–10 μm. Currently, structures have been made with stripes of Au, Ag, CdSe, Co, Cu, Ni, Pd, and Pt. These materials offer a variety of different properties. In particular, many of the metals in this group are excellent conductors, meaning these particles can actually be used as nanowires. Co and Ni are ferromagnetic and may be used for separation or assembly. CdSe is a semiconductor, possibly allowing for the synthesis of electronic devices such as transistors. Furthermore, many of these materials have different surface chemistries, making the orthogonal functionalization and assembly of these nanowires more accessible. This research focuses on increasing the number of materials available, especially semiconductors, incorporating these potentially useful materials into multilayered nanowires and evaluating their electrical properties, either individually or in small bundles. In addition, the surface chemistry of the various materials in the nanowires is being compared to aid in orthogonal self-assembly of functional nanostructures such as memory devices. The work presented will demonstrate the effects of rod composition on electrical properties. In particular, the effects of changing the work function of the materials on either side of a semiconductor to form Schottky junctions or ohmic contacts will be shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Peercy, P. S. Nature 2000, 406, 10231026.Google Scholar
2) Ito, T.; Okazaki, S. Nature 2000, 406, 10271031.Google Scholar
3) Liu, Q. H.; Wang, L. M.; Frutos, A. G.; Condon, A. E.; Corn, R. M.; Smith, L. M. Nature 2000, 403, 175179.Google Scholar
4) Ogihara, M.; Ray, A. Nature 2000, 403, 175179.Google Scholar
5) Seeman, N. C. Trends Biotech 1999, 17, 437443.Google Scholar
6) Sincell, M. Science 2000, 288, 11521153.Google Scholar
7) Wang, L. M.; Liu, Q. H.; Corn, R. M.; Condon, A. E.; Smith, L. M. J Am Chem Soc 2000, 122, 74357440.Google Scholar
8) Zeilinger, A. Science 2000, 289, 405406.Google Scholar
9) Hinds, E. Phys World 2000, 13, 2526.Google Scholar
10) Knight, P. Science 2000, 287, 441442.Google Scholar
11) Muthukrishan, A.; Stroud, C. R. Phys Rev A 2000, 6205, 23092316.Google Scholar
12) Vrijen, R.; Yablonovitch, E.; Wang, K.; Jiang, H. W.; Balandin, A.; Roychowdhury, V.; Mor, T.; DiVincenzo, D. Phys Rev A 2000, 6201, 23062315.Google Scholar
13) Waldrop, M. M. Technol Rev 2000, 103, 6065.Google Scholar
14) Marx, R.; Fahmy, A. F.; Myers, J. M.; Bermel, W.; Glaser, S. J. Phys Rev A 2000, 6201, 23102317.Google Scholar
15) Chandross, E. A. Chem Eng News 2000, 78, 8.Google Scholar
16) Ellenbogen, J. C.; Love, J. C. Proc IEEE 2000, 88, 386426.Google Scholar
17) Lent, C. S. Science 2000, 288, 15971598.Google Scholar
18) Palacio, F.; Miller, J. S. Nature 2000, 408, 421422.Google Scholar
19) Ratner, M. Nature 2000, 404, 137138.Google Scholar
20) Reed, M. A. Proc IEEE 1999, 87, 652658.Google Scholar
21) Hulteen, J. C.; Martin, C. R. J Mater Chem 1997, 7, 10751085.Google Scholar
22) Martin, C. R. Chem Mater 1996, 8, 17391746.Google Scholar
23) Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. J Phys Chem 1996, 100, 1403714047.Google Scholar
24) Schwanbeck, H.; Schmidt, U. Electrochim Acta 2000, 45, 43894398.Google Scholar
25) Searson, P. C.; Cammarata, R. C.; Chien, C. L. J Electron Mater 1995, 24, 955960.Google Scholar
26) Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B. R.; Mbindyo, J.; Mallouk, T. E. Appl Phys Lett 2000, 77, 13991401.Google Scholar
27) Xu, D. S.; Xu, Y. J.; Chen, D. P.; Guo, G. L.; Gui, L. L.; Tang, Y. Q. Chem Phys Lett 2000, 325, 340344.Google Scholar
28) Martin, B. R.; Dermody, D. J.; Reiss, B. D.; Fang, M. M.; Lyon, L. A.; Natan, M. J.; Mallouk, T. E. Advan Mater 1999, 11, 10211025.Google Scholar
29) Klein, J. D.; Herrick, R. D.; Palmer, D.; Sailor, M. J.; Brumlik, C. J.; Martin, C. R. Chem. Mater. 1993, 5, 902904.Google Scholar
30) Pandey, R. K.; Sahu, S. N.; Chandra, S. Handbook of Semiconductor Electrodeposition; Marcel Dekker, Inc.: New York, 1996.Google Scholar