Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T20:53:41.727Z Has data issue: false hasContentIssue false

The Electrochemistry of Germanium Nitride Versus Lithium

Published online by Cambridge University Press:  11 February 2011

N. Pereira
Affiliation:
Telcordia Technologies, Red Bank, NJ 07701, USA, E-mail: npereira@telcordia.com, gamatucc@telcordia.com Rutgers University, Piscataway, NJ 08854, USA, E-mail: npereira@telcordia.com, gamatucc@telcordia.com
M. Balasubramanian
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA, E-mail: npereira@telcordia.com, gamatucc@telcordia.com
L. Dupont
Affiliation:
Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, 80039 Amiens, France, E-mail: npereira@telcordia.com, gamatucc@telcordia.com
J. McBreen
Affiliation:
Brookhaven National Laboratory, Upton, NY 11973, USA, E-mail: npereira@telcordia.com, gamatucc@telcordia.com
L. C. Klein
Affiliation:
Rutgers University, Piscataway, NJ 08854, USA, E-mail: npereira@telcordia.com, gamatucc@telcordia.com
G. G. Amatucci
Affiliation:
Telcordia Technologies, Red Bank, NJ 07701, USA, E-mail: npereira@telcordia.com, gamatucc@telcordia.com
Get access

Abstract

Germanium nitride (Ge3N4) was examined as a potential negative electrode material for Li-ion batteries. The electrochemistry of Ge3N4 versus Li showed high reversible capacity (500mAh/g) and good capacity retention during cycling. A combination of ex-situ and in-situ x-ray diffraction (XRD), ex-situ transmission electron microscopy (TEM) and ex-situ selective area electron diffraction (SAED) analyses revealed evidence supporting the conversion of a layer of Ge3N4 crystal into an amorphous Li3N+LixGe nanocomposite during the first lithiation. The nanocomposite was electrochemically active via a reversible Li-Ge alloying reaction while a core of unreacted Ge3N4 crystal remained inactive. The lithium/metal nitride conversion reaction process was kinetically hindered resulting in limited capacity. Mechanical milling was found to improve the material capacity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nishijima, M., Kagohashi, T., Imanishi, N., Takeda, Y., Yamamoto, O. and Kondo, S., Solid State Ionics, 83, 107 (1996).Google Scholar
2. Shodai, T., Okada, S., Tobishima, S. and Yamaki, J., Solid State Ionics, 86–88, 785 (1996).Google Scholar
3. Shodai, T., Okada, S., Tobishima, S. and Yamaki, J., J. Power Sources, 68, 515 (1997).Google Scholar
4. Shodai, T., Sakurai, Y. and Suzuki, T., Solid State Ionics, 122, 85 (1999).Google Scholar
5. Takeda, Y., Nishijima, M., Yamahata, M., Takeda, K., Imanishi, N. and Yamamoto, O., Solid State Ionics, 130, 61 (2000).Google Scholar
6. Yang, J., Takeda, Y., Imanishi, N. and Yamamoto, O., Electrochimica Acta, 46, 2659 (2001).Google Scholar
7. Bates, J.B., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D., Solid State Ionics, 135, 33 (2000).Google Scholar
8. Neudecker, B.J. and Zuhr, R.A., Intercalation Compounds for Battery Materials, Proceedings of the Electrochemical Society, 99–24, 295 (2000).Google Scholar
9. Pereira, N., Klein, L.C. and Amatucci, G.G., J. Electrochem. Soc., 149, A262 (2002).Google Scholar
10. Pereira, N., Klein, L.C. and Amatucci, G.G., J. Electrochem. Soc., submitted.Google Scholar