Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-19T06:24:16.864Z Has data issue: false hasContentIssue false

Electrodeposited Cu2O|ZnO Heterostructures With High Built-In Voltages For Photovoltaic Applications

Published online by Cambridge University Press:  22 August 2014

Shane Heffernan
Affiliation:
Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HA
Andrew J. Flewitt
Affiliation:
Electrical Engineering Division, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HA
Get access

Abstract

Methods of improving low-cost Cu2O|ZnO heterojunction diodes fabricated through galvanostatic deposition of Cu2O are presented. Improved processing parameters responsible for maximizing built-in voltage (Vbi) are determined. The relationship between pH, deposition current, temperature, and diode quality is analyzed and a process window for optimal Cu2O deposition on ZnO is obtained with a pH range between 12.0 and 12.1 and a current density range which is determined by the effect of both pH and deposition current (Jdep) on grain size. The pH window is found to be narrower than previously reported1 and much narrower than the processing window for the deposition of Cu2O films. A two-step approach deposition based on the use of different Jdep is presented for the first time. A Vbi of 0.6 V is achieved, which is the highest reported for cells produced using low temperature processing routes involving electrodeposition and reactive sputtering.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhou, Y. and Switzer, J.A., Scr. Mater. 38, 1731 (2000).CrossRefGoogle Scholar
Wadia, C., Alivisatos, a P., and Kammen, D.M., Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle Scholar
Photovoltaics, A., Ru, S., Anderson, A.Y., Barad, H., Kupfer, B., Bouhadana, Y., and Zaban, A., (2012).Google Scholar
Musselman, K.P., Nanostructured Solar Cells, University of Cambridge, 2010.Google Scholar
Meyer, B.K., Polity, A., Reppin, D., Becker, M., Hering, P., Klar, P.J., Sander, T., Reindl, C., Benz, J., Eickhoff, M., Heiliger, C., Heinemann, M., Müller, C., and Ronning, C., Phys. Status Solidi 249, 1487 (2012).CrossRefGoogle Scholar
Rai, B., Sol. Cells 25, 265 (1988).CrossRefGoogle Scholar
Herion, J., Niekisch, E.A., and Scharl, G., Sol. Energy Mater. 4, 101 (1980).CrossRefGoogle Scholar
Lee, Y.S., Heo, J., Siah, S.C., Mailoa, J.P., Brandt, R.E., Kim, S.B., Gordon, R.G., and Buonassisi, T., Energy Environ. Sci. 6, 2112 (2013).CrossRefGoogle Scholar
Izaki, M., Shinagawa, T., Mizuno, K.-T., Ida, Y., and Tasaka, A., J. Phys. D. Appl. Phys. 40, 3326 (2007).CrossRefGoogle Scholar
Jeong, S., Song, S.H., Nagaich, K., Campbell, S. a., and Aydil, E.S., Thin Solid Films 519, 6613 (2011).CrossRefGoogle Scholar
Marin, A.T., Musselman, K.P., and MacManus-Driscoll, J.L., J. Appl. Phys. 113, 144502 (2013).CrossRefGoogle Scholar
Musselman, K.P., Wisnet, A., Iza, D.C., Hesse, H.C., Scheu, C., MacManus-Driscoll, J.L., and Schmidt-Mende, L., Adv. Mater. 22, E254 (2010).CrossRefGoogle Scholar
Septina, W., Ikeda, S., Khan, M.A., Matsumura, M., and Peter, L.M., Electrochim. Acta 56, 4882 (2011).CrossRefGoogle Scholar
Jeong, S., Mittiga, A., Salza, E., Masci, A., and Passerini, S., Electrochim. Acta 53, 2226 (2008).CrossRefGoogle Scholar
Wang, L.C., de Tacconi, N.R., Rajeshwar, K., and Tao, M., Thin Solid Films 515, 3090 (2007).CrossRefGoogle Scholar
Gancedo, L.G., Ashley, G.M., Zhao, X.B., Pedrós, J., Flewitt, A. J., Milne, W.I., Luo, J.K., Lu, J.R., Ford, C.J.B., and Zhang, D., Int. J. Nanomanuf. 7, 371 (2011).CrossRefGoogle Scholar
Stareck, J., USPO 2081121 (1935).Google Scholar
Pourbaix, M., Atlas of Electrochemical Equilibria, 2nd Englis (Natl Assn of Corrosion, 1974).Google Scholar
Osherov, A., Zhu, C., and Panzer, M.J., Chem. Mater. 25, 692 (2013).CrossRefGoogle Scholar
Scanlon, D., Morgan, B., Watson, G., and Walsh, A., Phys. Rev. Lett. 103, 1 (2009).CrossRefGoogle Scholar
Raebiger, H., Lany, S., and Zunger, A., Phys. Rev. B 76, 1 (2007).CrossRefGoogle Scholar
Paul, G.K., Nawa, Y., Sato, H., Sakurai, T., and Akimoto, K., Appl. Phys. Lett. 88, 141901 (2006).CrossRefGoogle Scholar