Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T12:50:10.020Z Has data issue: false hasContentIssue false

Electron Range and Electron Generation Function in a-SLH

Published online by Cambridge University Press:  21 February 2011

S. Najar
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, École Polytechnique, Palaiseau, France (UPR 0258 du CNRS)
B. Equer
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, École Polytechnique, Palaiseau, France (UPR 0258 du CNRS)
J-B. Chévrier
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, École Polytechnique, Palaiseau, France (UPR 0258 du CNRS)
Get access

Abstract

The characterization of a-Si:H structure, using an electron beam in the keV range, is an interesting alternative to the more common photon beam techniques. a-Si:H device characterization by the determination of collection efficiency and other electronic parameters can be performed by variable energy EBIC method. But this requires an accurate knowledge of electron generation function and electron range in a-Si:H. In this paper we present an experimental determination of electron generation function and electron range in a-Si:H. To do this, a series of identical n-i-p a-Si:H diodes with a thin aluminium top electrodes were fabricated and varying thicknesses of a-Si:H layer were deposited on it. In EBIC measurements, the n-i-p diode was reverse biased at maximum potential. The electron range of a-Si:H was determined directly by measuring the energy at which electron beam is completely stopped in the top layer and no carrier generation is possible in the n-i-p diode. The generation function is then deduced from EBIC contrast measurements between the aluminium electrode and the top a-Si:H layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lander, J.J., Schreiber, H., Buck, T.M., Mathews, , Appl. Phys. Lett 3, p.206 (1963).CrossRefGoogle Scholar
2. MacDonald, N.C., Everhart, T. E., Appl. Phys. Lett. 7, p.267 (1965).Google Scholar
3. Wittry, D. B., Keyser, D.F., J. Appl. Phys. 36, P-1387 (1965).Google Scholar
4. Wu, C.J. and Wittry, D.B., J. Appl. Phys. 49, No.5, May (1978), p. 2827.Google Scholar
5. Leamy, H.J., J. Appl. Phys. 53 No.6, p. 51 (1982).CrossRefGoogle Scholar
6. Najar, S., Equer, B., Lakhoua, N., J. Appl. Phys. 69, p.3975(1991).CrossRefGoogle Scholar
7. Rajopadhye, N.R., Babras, S.M. and Bhoraskar, S.V., Solid, J. State Communications. 67, N 5, p. 557(1988).Google Scholar
8. Bresse, J. F. Thesis of Docteur Ingenieur University of Grenoble(1972).Google Scholar
9. Everhart, T.E. and Hoff, P.H. J. Appl. Phys. 42 (13), p.5837 (1971).Google Scholar
10. Napchan, E. and Holt, D.B., Proc. of the 5th Conference on Microscopy of Semiconducting Materials, 6–8 April 1987, Oxford, Ed. by Cullis, A.G., IOP Ltd Pub. pp.733738 (1987).Google Scholar
11. Roca i Cabarrocas, P., Chévrier, J.B, Hue, J., LLoret, A., Parey, J.Y and Schmitt, J.P.M., J. Vac. Sci Technol. A 9 (4), (1991).CrossRefGoogle Scholar
12. Equer, B., Karar, A., Jordi, A. and Najar, S., 8th E.C. Photovoltaic Solar Energy Conference, Ed. Solomon, I., Equer, B. and Helm, P., Kluwer Acad. Pub., pp.908913(1988).Google Scholar
13. Forsythe, G.E., Malcolm, M.A. and Moler, C.B., Computer Methods for Mathematical Computations (Prentice-Hall, New Jersey, 1977).Google Scholar