Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:14:40.205Z Has data issue: false hasContentIssue false

The Electronic Properties Of Semiconductor Grain Boundaries

Published online by Cambridge University Press:  15 February 2011

C. H. Seager*
Affiliation:
Division 5132, Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Grain boundaries play an important role in determining the operating characteristics of devices such as varistors and thin film solar cells and transistors. In the last several years detailed one-electron expressions have been developed for the transport coefficients of majority and minority carriers at grain boundaries. These theories have been successful in predicting the measured electrical properties of bicrystals in lightly doped silicon. The status of our understanding in this area will be reviewed in some detail. Recent extensions of these calculations which have been necessary to explain measurements on grain boundaries in degenerately doped GaAs will also be reviewed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Chu, T. L., Chu, S. S., Duh, K. Y. and Yoo, H. I., Proc. of the National Workshop on Low Cost Polycrystalline Solar Cells, May, 1976, Dallas, TX, p. 408.Google Scholar
2. Anderson, J. C., Thin Solid Films 37, 127 (1980).Google Scholar
3. Mahan, G. D., Levinson, L. M. and Phillip, H. R., J. Appl. Phys. 50, 2799 (1979).Google Scholar
4. Bube, R. H., Appl. Phys. Lett. 13, 136 (1968).Google Scholar
5. Heleskivi, J. and Salo, T., J. Appl. Phys. 43, 740 (1972).Google Scholar
6. Bube, R., J. Appl. Phys. 43, 742 (1972).Google Scholar
7. Fundamental Studies of Grain Boundary Passivation in Polycrystalline Silicon with Application to Improved Photovoltaic Devices, Seager, C. H. and Ginley, D. S., August 1981, SAND81–1950.Google Scholar
8. Martinez, J., Criado, A. and Piqueras, J., J. Appl. Phys. 52, 1301 (1981).Google Scholar
9. Seager, C. H. and Castner, T. G., J. Appl. Phys. 49, 3879 (1978).Google Scholar
10. See for instance - “High Resolution Electron Microscopy of Grain Boundaries in Silicon” by Cunningham, B. and Ast., D. G., this conference.Google Scholar
11. Kimerling, L. C. and Patel, J. R., Appl. Phys. Lett. 34, 73 (1979).Google Scholar
12. Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
13. Baccarani, G., Ricco, B. and Spadini, G., J. Appl. Phys. 49, 5565 (1978).Google Scholar
14. Read, w. T., Phil. Mag 45, 775 (1954)Google Scholar
Read, w. T. 45, 1119 (1954) andGoogle Scholar
Read, w. T. 46, 111 (1955).Google Scholar
15. Pike, G. E. and Seager, C. H., J. Appl. Phys. 50, 3414 (1979).Google Scholar
16. Seager, C. H., Pike, G. E. and Ginley, D. S., Phys. Rev. Lett. 43, 532 (1979).CrossRefGoogle Scholar
17. Seager, C. H. and Pike, G. E, Appl. Phys. Lett. 37, 747 (1980).Google Scholar
18. Fundamental Studies of Grain Boundary Passivation in Polycrystalline Silicon With Application to Improved Photovoltaic Devices, Seager, C. H. and Ginley, D. S., SAND80–2461, August 1980.Google Scholar
19. Taylor, W. E., Odell, N. H. and Fan, H. Y., Phys. Rev. 88, 867 (1952).CrossRefGoogle Scholar
20. Mueller, R. K., J. Appl. Phys. 32, 635 (1961);Google Scholar
32, 640 (1961).Google Scholar
21. Seager, C. H. and Pike, G. E., Appl. Phys. Lett. 35, 709 (1979).Google Scholar
22. Seager, C. H. and Pike, G. E., to be published in Appl. Phys. Letts.Google Scholar
23. Fonash, S. J., Sol. St. Elec. 15, 783 (1972).Google Scholar
24. Conley, J. W. and Mahan, G. D., Phys. Rev. 161, 681 (1967).Google Scholar
25. Stratton, R., Proc. Phys. Soc., London, B69, 513 (1956).Google Scholar
26. See for example, Sze, S. M. Physics of Semiconductor Devices, (Wiley- Interscience, New York, 1969), Chapter 8.Google Scholar
27. For an excellent review of this technique see: Miller, G. L., Lang, D. V. and Kimerling, L. C., Ann. Rev. Mater. Sci., pp. 377448 (1977).Google Scholar
28. Seager, C. H., J. Appl. Phys. 52, 3960 (1981).CrossRefGoogle Scholar
29. Seager, C. H. and Pike, G. E., unpublished.Google Scholar
30. Hower, P. L. and Gupta, T. K., J. Appl. Phys. 50, 4847 (1979).Google Scholar
31. See also, “Electronic Properties of Zinc Oxide Varistors”, by Pike, G. E., this conference.Google Scholar
32. Faughnan, B. W., Blanc, J., Phillips, W. and Redfield, D., Technical Progress Quarterly Report No. 3, SERI/PR–0–8276–3, p. 10, 1980.Google Scholar
33. Card, H. C. and Yang, E. S., IEEE Trans. Electron Devices Ed–24 397 (1977).Google Scholar
34. Fossum, J. G. and Lindholm, F. A., IEEE Trans. Electron Devices ED–27, 692 (1980).Google Scholar