Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T23:40:21.157Z Has data issue: false hasContentIssue false

Electronic Structure and Surface Science of delta Plutonium

Published online by Cambridge University Press:  01 February 2011

M. Butterfield
Affiliation:
MST-10, LANL, Los Alamos, NM, USA.
T. Durakiewicz
Affiliation:
MST-10, LANL, Los Alamos, NM, USA.
E. Guziewicz
Affiliation:
MST-10, LANL, Los Alamos, NM, USA.
J. J. Joyce
Affiliation:
MST-10, LANL, Los Alamos, NM, USA.
D. P. Moore
Affiliation:
NMT-16, LANL, Los Alamos, NM, USA
A. J. Arko
Affiliation:
MST-10, LANL, Los Alamos, NM, USA.
L. A. Morales
Affiliation:
NMT-16, LANL, Los Alamos, NM, USA
Get access

Abstract

High resolution photoelectron spectroscopy (PES) studies were conducted on a δ-phase Plutonium sample cleaned by laser ablation and gas dosed with O2 and H2. The measurements were made with an instrument resolution of 60 meV and with the sample at 77 K. The PES data strongly support a model with Pu2O3 growth on the metal and then PuO2 growth on the Pu2O3 layer at this temperature. In vacuum, the PuO2 reduces to Pu2O3 at room temperature with a pressure of 6×10−11 Torr. In the case of H2 dosing the hydrogen appears to penetrate the surface and disrupt the valence band as evidenced by a drop in intensity of the peak at EF which is not accompanied by a drop in the main 5f manifold at ∼2eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brooks, M.S.S., Johansson, B. and Skriver, H., “Handbook on the Physics and Chemistry of the Actinides”, Vol. 1, Eds. Freeman, A.J. and Lander, G.H. (1984)p 153 Google Scholar
[2] Naegle, J.R., Ghijsen, J. and Manes, L., Struct. Bonding 59/60 (1985) 199.Google Scholar
[3] Wills, J.M., Eriksson, O., Joyce, J.J., Durakiewicz, T., Butterfield, M.T., Arko, A.J., Delin, A., Andersson, P.H., Moore, D.P. and Morales, L.A. (submitted Journal of Electron Spectroscopy and cond-mat/0307767.)Google Scholar
[4] Larson, D.T., J. Vac. Sci. Technol. 17 (1980) 55.Google Scholar
[5] Cox, L.E. and Ward, J.W., Inorg. Nucl. Chem. Lett. 17 (1981) 9.Google Scholar
[6] Baptist, R., Courteix, D., Chayrouse, J. and Heinz, L., J. Phys. F (Met. Phys) 12 (1982) 2103.Google Scholar
[7] Naegle, J.R., Manes, L., Spirlet, J.C. and Müller, W., Phys. Rev. Lett. 52 (1984) 1834 Google Scholar
[8] Cox, L.E., Phys. Rev. B 14 (1988) 8480 Google Scholar
[9] Courteix, D., Chayrouse, J., Heinz, L. and Baptist, R., Solid State Commun. 39 (1981) 209 Google Scholar
[10] Almeida, T., Cox, L.E., Ward, J.W. and Naegele, J.R., Surface Science 287/288 (1993 141 Google Scholar
[11] Durakiewicz, T., Arko, A.J., Joyce, J.J., Graham, K. and Moore, D.P., Rev. Sci. Instr. 73 (2002) 3750 Google Scholar
[12] Arko, A.J. et al., Phys. Rev. B 62 (2000) 1773.Google Scholar
[13] Joyce, J. J. et al., Surf. Interface Anal. 26, 121 (1998).Google Scholar