Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T13:28:04.777Z Has data issue: false hasContentIssue false

Electronic Structures of Icosahedral C60 and C60X (X=K, O and Cl) Clusters

Published online by Cambridge University Press:  28 February 2011

Susumu Saito*
Affiliation:
Fundamental Research Laboratories, NEC Corporation 34 Miyukigaoka, Tsukuba, Ibaraki 305, JAPAN
Get access

Abstract

I report the electronic structures of “buckminsterfullerene”, C60 cluster with truncated-icosahedron geometry, and C60X where X is a foreign atom trapped at the center of the C60 cage (X=K, O, and Cl). The local-density approximation with Xα exchange-correlation potential is used. The obtained electronic structure of C60 has a rather large energy gap between the completely occupied highest-occupied state and the lowest-unoccupied state, in accord with previous calculations. In the case of C60K, a valence electron of an alkali-metal atom is found to transfer to the outer C60 surface. On the other hand, in C60O and C60Cl, 2p state of O and 3p state of Cl appear inside the energy gap of the pure C60 cluster. Such variety of results indicates great possibilities of C60X as constructing units of new materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2. Haddon, R. C., Brus, L. E., and Raghavachari, K., Chem. Phys. Lett. 125, 459 (1986);Google Scholar
Ozaki, M. and Takahashi, A., ibid., 127, 242 (1986);Google Scholar
Satpathy, S., ibid., 130, 545 (1986);Google Scholar
Larsson, S., Volosov, A., and Rosén, A., ibid. 137, 501 (1987).Google Scholar
3. Kroto, H., Science 242, 1139 (1988).Google Scholar
4. Heath, J. R., O’Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Kroto, H. W., Tittel, F. K., and Smalley, R. E., J. Am. Chem. Soc. 107, 7779 (1985);Google Scholar
Weiss, F. D., Elkind, J. L., O’Brien, S. C., Curl, R. F., and Smalley, R. E., ibid., 110, 4464 (1988).Google Scholar
5. Krätschmer, W., Lamb, L. D., Rostiropoulos, K., and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
6. Rosén, A. and Wästberg, B., Z. Phys. D 12, 387 (1989).Google Scholar
7. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964);CrossRefGoogle Scholar
Kohn, W. and Sham, L. J., Phys. Rev. 139, A796 (1965).Google Scholar
8. Satoko, C., Chem. Phys. Lett. 83, 111 (1981);CrossRefGoogle Scholar
Phys. Rev. B 30, 1754 (1984).Google Scholar
9. Newton, M. D. and Stanton, R. E., J. Am. Chem. Soc. 108, 2469 (1986).CrossRefGoogle Scholar
10. Lüthi, H. P. and Almlöf, J., Chem. Phys. Lett., 135, 357 (1987).Google Scholar
11. Watanabe, H., in The Physics and Fabrication of Micro structures and Microde-vices, edited by Kelly, M. J. and Weisbuch, C. (Springer-Verlag, Heidelberg, 1986) p. 158;Google Scholar
Inoshita, T., Ohnishi, S., and Oshiyama, A., Phys. Rev. Lett. 57, 2560 (1986);CrossRefGoogle Scholar
Phys. Rev. B 38, 3733 (1988).Google Scholar