Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T12:31:53.436Z Has data issue: false hasContentIssue false

Empirical Interatomic Potentials for L1O Tial and B2 Nial

Published online by Cambridge University Press:  26 February 2011

Satish I. Rao
Affiliation:
NRC Senior Research Assosciate, Wright Research & Development Center, WPAFB, OH 45433.
C. Woodward
Affiliation:
Universal Energy Systems, Inc., Dayton, OH 45432
T.A. Parthasarathy
Affiliation:
Universal Energy Systems, Inc., Dayton, OH 45432
Get access

Abstract

Recent studies have suggested a particular relationship between the degree of covalent bonding in TiAl and the mobility of dislocation[1,2]. Ultimately such electronic effects In ordered compounds must dictate the dislocation core structures and at the same time the dislocation mobility within a given compound. However, direct modelling of line defects Is beyond the capability of todays electronic structure techniques. Alternatively, significant steps toward extending our understanding of the flow behaviour of structural intermetallics may come through general application of empirical interatomic potential methods for calculating the structure and mobility of defects. Toward this end, we have constructed semi-empirical interatomic potentials within the embedded atom formalism for L1O and B2 type structures. These potentials have been determined by fitting to known bulk structural and elastic properties of TIAl and NiAl, using least squares procedures. Simple expressions that relate the parameters of the potentials to the bulk properties are used in the fitting procedure. Calculations of dislocation core structures and planar fault energies using these potentials are considered. The differences between the optimized bulk properties predicted from the potentials and the values for these properties are discussed in terms of non-spherical nature of the electron density distribution. Empirical methods which incorporate these effects into interatomic potentials are briefly discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Grinberg, B.A., Scr.metall., 23, 631 (1989).CrossRefGoogle Scholar
2) Court, S.A., Vasudevan, V.K. and Fraser, H.L., Phil.Mag A, 61, 141 (1990).CrossRefGoogle Scholar
3) Vitek, V., Crystal Lattice Defects, 5, 1(1974).Google Scholar
4) Yamaguchi, M., Paidar, V., Pope, D.P. and Vitek, V., Phil.Mag A, 45, 867 (1982).CrossRefGoogle Scholar
5) Paidar, V., Pope, D.P. and Vitek, V., Acta Metall., 32, 435(1984).CrossRefGoogle Scholar
6) Vitek, V. in ‘Dislocations and Properties of Real Matedrials’,Proceedings of the conference to celebrate the fiftieth anniversary of the concept of dislocations in crystals The Institute of Metals,London30(1985).Google Scholar
7) Grinberg, B.A., Antonova, O.V., lndenbaum, V.N., Karkina, L.E., Notkin, A.B. and Ponomarev, M.V., ‘Dislocations in TiAl-Part 1’, lnstitute of Metals Physics, Ural division of the USSR Academy of Science, 3(1989).Google Scholar
8) Grinberg, B.A., lvanov, M.A., Gornostyrev, Yu.N. and Yakovenko, L.I., Phys.Met.Metall., 39, 117(1978).Google Scholar
9) Basinski, Z.S. and Duesbury, M.S. in ‘Dislocation Modelling of Physical Systems’, ed.by Ashby, M.F., Bullough, R., Hartley, C.S. and Hirth, J.P., Pergamon Press, Oxford, 273(1981).CrossRefGoogle Scholar
10) Duesbury, M.S., Acta.Metall., 31, 1747(1983).CrossRefGoogle Scholar
11) Daw, M.S. and Baskes, M.I., Phys.Rev B, 29, 6443(1984).CrossRefGoogle Scholar
12) Finnis, M.W. and Sinclair, J.E., Phil.Mag A, 50, 45(1984).CrossRefGoogle Scholar
13) Voter, A.F. and Chen, S.P., Mater.Res.Soc.Symp.Proc., 82, 175(1987).CrossRefGoogle Scholar
14) Pasianot, R., Farkas, D. and Savino, E.J., Physique, J.de., special issue ’Mechanisms of deformation and Strength of advanced materials’,(1990), in press.Google Scholar
15) Yoo, M.H., Daw, M.S. and Baskes, M.I. in ‘Atomistic Simulation of Materials-Beyond Pair Potentials’, ed.by Vitek, V. and Srolovitz, D., Plenum Press, New York, 401 (1989).CrossRefGoogle Scholar
16) Parthasarathy, T.A., Dimiduk, D., Woodward, C. and Diller, D.,this proceedings.Google Scholar
17) Foiles, S.M. and Daw, M.S., J.Mater.Res., 2, 5 (1987).CrossRefGoogle Scholar
18) Yarnaguchi, M., Umakoshi, Y. and Yamane, T. in ‘Dislocations in Solids’, Uriversity of Tokyo Press, 77(1985).Google Scholar
19) Rao, S.I., Parthasarathy, T.A., Woodward, C. and Dimiduk, D.,to be published.Google Scholar
20) Morinaga, M., Saito, J., Yukawa, N. and Adachi, H., Acta.Metall., 38, 25(1990).CrossRefGoogle Scholar
21) Fu, C.L. and Yoo, M.H.,Mater.Res.Soc.Symp.Proc.,186(1990).CrossRefGoogle Scholar
22) Woodward, C., Mclaren, J. and Rao, S.I.,this proceedings.Google Scholar
23) Baskes, M.I., Nelson, J.S. and Wdght, A.F., Phys.Rev B,40, 6085(1989).CrossRefGoogle Scholar
24) Rose, J.H., Smith, J.R., Guinea, F. and Ferrante, J., Phys.Rev B,29, 2963(1984).CrossRefGoogle Scholar
25) Pasianot, R., Farkas, D. and Savino, E.J.,Phys.Rev B,in press.Google Scholar
26) Legrand, P.B., Phil.Mag B,49, 171 (1984).CrossRefGoogle Scholar
27) Clapp, P.C., Rubins, M.J., Charpenay, S., Rifkin, J.A., Yu, Z.Z. and Voter, A.F., Mater.Res.Soc.Symp.Proc., 133, 29 (1989).CrossRefGoogle Scholar
28) Igarashi, M., Khantha, M. and Vitek, V. in“Atomistic Simulation of Materials-Beyond Pair Potentials”, ed.by Vitek, V. and Srolovitz, D, Plenum Press, New York, 203 (1989).CrossRefGoogle Scholar
29) Carlsson, A.E. ,Solid State Physics, 43, 1 (1990).CrossRefGoogle Scholar
30) Hug, G., Loiseau, A. and Veyssiere, P., Phil.MagA,57, 499 (1988).CrossRefGoogle Scholar
31) Ye.Karkina, L., Gdnberg, B.A. and Gomostyrev, Yu.N., Phys.Met.Metall., 63, 60 (1987).Google Scholar
32) Pearson, W.B., ‘A Handbook of Lattice Spacings and Structures of Metals and Alloys-Vols 1 and 2’, Pergamon Press, Oxford (1987).Google Scholar
33) Kittel, C., ‘lntroduction to Solid State Physics’, Wiley-interscience, New York (1986).Google Scholar
34) Simmon, G. and Wang, H., ‘Single Crystal Elastic Constants and Calculated Aggregate Properties-A Handbook’, MlT Press, Cambrddge (1971).Google Scholar
35) Shestopal, V.O., Sov.Phys.Sol.St., 7, 2798 (1966).Google Scholar
36) Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M. and Kelly, K.K., ‘Selected Values of Thermodynamic Properties of Binary Alloys’, ASM,Metals Park (1973).Google Scholar
37) Rusovic, N. and Warlimont, H., Phys.Stat.Sol(a), 44, 609 (1977)CrossRefGoogle Scholar
38) Ball, A. and Smallman, R.E., Acta.Met., 16, 233(1968).CrossRefGoogle Scholar
39) Stassis, S., Phys.Stat.Sol(a), 64, 335 (1981).Google Scholar
40) Hultgren, R., Orr, R.L., Anderson, P.D. and Kelly, K.K., ‘Selected Values of Thermodynamic Properties of Binary Alloys’, John Wiley and Sons,lnc., New York (1963).Google Scholar