Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T01:29:17.861Z Has data issue: false hasContentIssue false

Energy-Back-Transfer Process in Rare-Earth Doped AlGaN

Published online by Cambridge University Press:  01 February 2011

A. Wakahara
Affiliation:
Department of Electrical & Electronic Engineering, Toyohashi University of Technology, Toyohashi 441-8580, JAPAN
T. Fujiwara
Affiliation:
Department of Electrical & Electronic Engineering, Toyohashi University of Technology, Toyohashi 441-8580, JAPAN
H. Okada
Affiliation:
Department of Electrical & Electronic Engineering, Toyohashi University of Technology, Toyohashi 441-8580, JAPAN
A. Yoshida
Affiliation:
Department of Electrical & Electronic Engineering, Toyohashi University of Technology, Toyohashi 441-8580, JAPAN
T. Ohshima
Affiliation:
Department of Material Development, JAERI-Takasaki, Takasaki, 370-1292, Japan
H. Itho
Affiliation:
Department of Material Development, JAERI-Takasaki, Takasaki, 370-1292, Japan
Get access

Abstract

Temperature dependence of time-resolved photoluminescence (PL) properties for rare-earth ions (REIs: Eu, Tb, and Er) implanted AlxGa1-xN (x=0∼1) is investigated. Thermal quenching for RE-related PL becomes small when increasing the Al contents. The PL decay time of REIs used in the present work becomes shorter when increasing the temperature and/or PL peak energy. The temperature dependence of PL intensity and the decay time are analysed by assuming phonon assisted energy-back-transfer model, in which the energy in REIs escape to trap levels. From the results, the improvement of PL properties can be well explained by the model, in which the activation energy for energy-back-transfer process is increased as increasing the Al contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weber, M. J., Phys. Rev., 171, 283 (1968).Google Scholar
2. Koizumi, A., Fujiwara, Y., Urakami, A., Inoue, K., Yoshikane, T., and Takeda, Y., Appl. Phys., Lett., 83, 4521 (2003)Google Scholar
3. Steckl, A. J., Garter, M., Lee, D. S., Heikenfeld, J., and Birkhahn, R., Appl. Phys. Lett.75, 2184 (1999).Google Scholar
4. Garter, M., Scofield, J., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett.74, 182 (1999).Google Scholar
5 Heikenfeld, J., Garter, M., Lee, D. S., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett.75, 1189 (1999).Google Scholar
6. Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., and Itho, H., phys. stat. sol. (c) 0, No.1, 461 (2002)Google Scholar
7. Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Ohshima, T., Itho, H., Shibata, T., and Tanaka, M., phys. stat. sol. (c) 0, No.7, 2623 (2003)Google Scholar
8. Nakanishi, Y., Wakahara, A., Okada, H., Yoshida, A., Oshima, T., and Itoh, H., phys. stat. sol (b) 240, No.2, 342 (2003)Google Scholar
9. Hömmerich, U., Nyein, Ei Ei, Lee, D. S., Steckl, A. J., and Zavada, J. M., Appl. Phys. Lett., 83, 4556 (2003)Google Scholar
10. Lee, D. S. and Steckl, A. J., Appl. Phys. Lett., 83, 2094 (2003)Google Scholar
11. Wakahara, A., Nakanishi, Y., Fujiwara, T., Okada, H., Yoshida, A., Ohshima, T., Kamiya, T., and Kim, Y. T., phys. stat. sol. (a) 201, 2768 (2004)Google Scholar
12. Wakahara, A., Nakanishi, Y., Fujiwara, T., Yoshida, A., Ohshima, T., and Kamiya, T., phys. stat. sol. (a) 202, 863 (2005)Google Scholar
13. Takahei, K., Taguchi, A., and Hogg, R. A., J. Appl. Phys. 82, 3997 (1997).Google Scholar
14. Priolo, F. and Franzo, G., J. Appl. Phys. 78, 3874 (1995).Google Scholar
15. Kik, P. G., Dood, M. J. A. de, Kikoin, K., and Polman, A., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
16. Lee, C. W., Everitt, H. O., Lee, D. S., Steckl, A. J., and Zavada, J. M., J.Appl. Phys., 95, 7717 (2004).Google Scholar