Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T00:33:12.065Z Has data issue: false hasContentIssue false

Epitaxial Buffer Layers on (012) Sapphire and (100) SrTiO3 for the Integration of YBa2Cu3Ox in Microwave Devices and Squids

Published online by Cambridge University Press:  26 February 2011

H. Schmidt
Affiliation:
Siemens AG, Corporate Research and Development, 8000 München 83, Germany
G. Vollnhals
Affiliation:
TU München, Fakultät für Physik, Department E 10,8046 Garching, Germany
G. Gieres
Affiliation:
Siemens AG, Corporate Research and Development, 8000 München 83, Germany
W. Wersing
Affiliation:
Siemens AG, Corporate Research and Development, 8000 München 83, Germany
H. Kinder
Affiliation:
TU München, Fakultät für Physik, Department E 10,8046 Garching, Germany
Get access

Abstract

The epitaxial growth of YBa2Cu3Ox films on sapphire for microwave applications requires epitaxial buffer layers hindering interdiffusion. Therefore the epitaxial growth of YSZ, the layer sequence Y2O3/YSZ, and Y2O3 on (012) sapphire was examined. In addition the growth of MgO and srTiO3 on sapphire substrates and the growth of MgO and CeO2 on SrTiO3 substrates was studied by X-ray diffraction, X-ray pole figure measurement and RBS-ion channeling. With a combination of these buffer layers bi-epitaxial grain boundaries in YBa2Cu3Ox films can be fabricated in future.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Valenzuela, A. A., Daalmans, B., and Roas, B., Electron. Lett. 25, 1435 (1989).Google Scholar
2. Wu, X. D., Muenchausen, R. E., Nogar, N. S., Pique, A., Edwards, R., Wilkens, B., Ravi, T. S., Hwang, D. M., and Chen, C. Y., Appl. Phys. Lett. 58, 304 (1991).Google Scholar
3. Schmidt, H., Hradil, K., Hösier, W., Wersing, W., Gieres, G., and Seeböck, R. J., Appl. Phys. Lett. 59, 222 (1991).Google Scholar
4. Berezin, A. B., Yuan, C. W., and de Lozanne, A. L., IEEE Transact, on Magnetics 27, 970 (1991).Google Scholar
5. Berezin, A. B., Yuan, C. W., and de Lozanne, A. L., Appl. Phys. Lett. 57, 90 (1990).Google Scholar
6. Char, K., Newman, N., Garrison, S. M., Barton, R. W., Taber, R. C., Laderman, S. S., and Jacowitz, R. D., Appl. Phys. Lett. 57, 409 (1990).Google Scholar
7. Wu, X. D., Dye, R. C., Muenchausen, R. E., Foltyn, S. R., Maley, M., Rollert, A. D., Garcia, A. R., and Nogar, N. S., Appl. Phys. Lett. 58, 2165 (1991).Google Scholar
8. Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).Google Scholar
9. Char, K., Colclough, M. S., Lee, L. P., and Zaharchuk, G., Appl. Phys. Lett. 59, 2177 (1991).Google Scholar
10. Eibl, O., Hradil, K., and Schmidt, H., Physica C 177, 89 (1991).Google Scholar