Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-10T06:21:21.928Z Has data issue: false hasContentIssue false

Epitaxial growth of (001) and (111) Ni films on MgO substrates

Published online by Cambridge University Press:  17 March 2011

Rosa Alejandra Lukaszew
Affiliation:
Presently at the Department of Physics and Astronomy, University of Toledo, Ohio
Vladimir Stoica
Affiliation:
Physics Department, University of Michigan, Ann Arbor
Ctirad Uher
Affiliation:
Physics Department, University of Michigan, Ann Arbor
Roy Clarke
Affiliation:
Physics Department, University of Michigan, Ann Arbor
Get access

Abstract

Metal-ceramic interfaces are important in applications as diverse as magnetic storage media and supported catalysts. It is very important to understand how the crystallography and microstructure of metallic films deposited onto ceramic substrates depend on growth and/or annealing conditions so that their physical properties (e.g. magnetic, electronic, etc.) can be tailored for specific applications. To this end, we have studied the epitaxial growth and annealing of (001) and (111) Ni films MBE grown on MgO substrates, where we have observed the evolution of the surface using correlated in- situ RHEED (reflection high-energy-electron diffraction) and STM (scanning tunneling microscopy) measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lukaszew, R. A., Sheng, Y., Uher, C., and Clarke, R., Appl. Phys. Lett. 75, 1941 (1999).Google Scholar
2. Hathaway, K. B. and Prinz, G., Phys. Rev. Let. 47, 1761 (1981); R. A. Lukaszew, E. Smith, R. Naik, C. Uher, R. Clarke, submitted to Phys. Rev. Lett. Google Scholar
3. Perry, S. S., Merrill, P. B., Surf. Sci. 383, 268 (1997).Google Scholar
4. Pacchioni, G., Rösch, N., J. Chem. Phy. 104, 7329 (1996).Google Scholar
5. Qiu, H., Nakai, H., Hashimoto, M., Safran, G., Adamik, M., Barna, P.B., Yagi, E., J. Vac. Sci. Technol. A 12, 2855 (1994); J. P. McCaffrey, E. B. Svedberg, J. R. Phillips, L. D. Madsen, J. Cryst. Growth 200, 498 (1999).Google Scholar
6. Svedberg, E. B., Sandström, P., Sundgren, J. –E., Greene, J. E., Madsen, L. D., Surf. Sci. 429, 206 (1999).Google Scholar
7. Haibach, P., Koble, J., Huth, M., Adrian, H., Thin Solid Films 336, 168 (1998).Google Scholar
8. Sandström, P., Svedberg, E. B., Birch, J., Sundgren, J. –E., Surf. Sci. 437, L767 (1999).Google Scholar
9. Barlet, D., Snyder, C. W., Orr, B. G., and Clarke, R., Sci. Instrum. 62, 1263 (1991); data acquisition using KSA400, k-Space. Assoc. Inc., Ann Arbor, MI 48109.Google Scholar
10. Zur, A., McGill, T. C., J. Appl. Phys. 55, 278 (1984).Google Scholar
11. Xu, H., Ng, K. Y. S., Surf. Sci. 355, L305 (1996).Google Scholar