Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T12:37:43.923Z Has data issue: false hasContentIssue false

Equilibrium And Non-Equilibrium Metal-Ceramic Interfaces

Published online by Cambridge University Press:  25 February 2011

Y. Gao
Affiliation:
Materials Science Division, Argon ne National Laboratory, Argonne, IL 60439
K. L. Merkle
Affiliation:
Materials Science Division, Argon ne National Laboratory, Argonne, IL 60439
Get access

Abstract

Metal-ceramic interfaces in theimodynamic equilibrium (Au/ZrO2) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO2 system, ZrO2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO2 phase. It appears that formation of the cubic ZrO2 is facilitated by alignment with the Au matrix. Most of the ZrO2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed {111} Au/ZrO2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This indicates that there may be a relatively strong bond between MgO and Au.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dodson, B.W., Schowalter, L. J., Cunningham, J. E., Poliak, F. H. (eds.), Layered Structures -Heteroepitaxv. Superlattices. Strain, and Metastability. MRS Symp. Proc. Vol. 160.Google Scholar
2. Lillie, E. D., Ho, P. S., Jaccodine, R., Jackson, K. (eds.), Electronic Packaging Materials Science V. MRS Symp. Proc. Vol. 203 (Materials Research Society, Pittsburgh, 1991).Google Scholar
3. Lin, R. Y., Arsenault, R. J., Martins, G. P., Fishman, S. G. (eds.), Interfaces in Metal-Ceramics Composites. TMS Proc. (The Minerals, Metals & Materials Society, 1990).Google Scholar
4. Schwartz, M. M., Ceramic Joining, ASM International (Materials Park, Ohio, 1990).Google Scholar
5. Mader, W., Mater. Res. Symp. Proc. 82, 403 (1987).CrossRefGoogle Scholar
6. Necker, G. and Mader, W., Phil. Mag. Lett. 58, 205 (1988).CrossRefGoogle Scholar
7. Ernst, F., Pirouz, P., Heuer, A. H., MRS Symp. Proc. 103, 557 (1989).Google Scholar
8. Merkle, K. L., in Metal-Ceramic Interfaces, ed. by Ruhle, M., Evans, A. G., Ashby, M. F., Hirth, J. P., Pergamon Press (1990) p. 242.CrossRefGoogle Scholar
9. Wyckoff, R. W. G., Crystal Structures, 2nd Edition, Vol. 1, Interscience Publishers (1963).Google Scholar
10. Hirth, J. P., Metall. Trans. A, 22, 1331 (1991).CrossRefGoogle Scholar
11. Gao, Y., Shewmon, P. G., Dregia, S. A., Acta Metall. 37, 3165 (1989).CrossRefGoogle Scholar