Skip to main content
    • Aa
    • Aa

Estimation of Longevity of Portland Cement Grout Using Chemical Modeling Techniques

  • S. R. Alcorn (a1), W. E. Coons (a1) and M.A. Gardiner (a2)

Portland cement has been identified as a likely candidate seal material by programs investigating the deep burial of nuclear waste as a disposal mechanism. The longevity of performance of cement grout is currently being investigated, along with bentonite, under the auspices of the Stripa Project. Coordinated laboratory, field, and modeling studies are underway to produce fundamental data, practical experience, and estimates of long-range performance, respectively. Long-term performance of cement grout is of particular concern. Since most of the solid phases of which grout is comprised are metastable, it is likely that grout performance will decrease with time. The question is whether performance will still be acceptable after this decrease. This issue is being addressed with the coupled use of geochemical and permeability modeling. For a simplified cement system, two mechanisms for chemical degradation have been considered: phase change and dissolution. For dissolution, both equilibrium (slow flow) and open (fast flow) systems have been analyzed as bounding scenarios. Granitic terrain groundwaters ranging from fresh to saline have been used in the analyses. To assess the consequences in terms of flow, an empirical relation between cement permeability and porosity has been developed. Performance changes with time have been predicted by making conservative estimates of local hydraulic head conditions for successive periods of repository history. For the granitic rock environments considered, preliminary results indicate that cement grout performance may be acceptable for tens of thousands to millions of years, providing its initial hydraulic conductivity is on the order of 10−12 m/s. Other conditions favoring long-term performance include minimizing the ettringite content of the grout, and emplacement at a site where the groundwater has an elevated TDS, and where the local hydraulic gradient is flat or repository resaturation times are short.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[13] E. M. Gartner , and H. M. Jennings , 1987, “Thermodynamics of Calcium Silicate Hydrates and Their Solutions,” J. Am. Ceram. Soc., vol. 70, pp. 743–49.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Online Proceedings Library (OPL)
  • ISSN: -
  • EISSN: 1946-4274
  • URL: /core/journals/mrs-online-proceedings-library-archive
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 4 *
Loading metrics...

Abstract views

Total abstract views: 64 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.