Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T22:24:53.926Z Has data issue: false hasContentIssue false

Evaluation of Solubility Limit of Carbon in Ni3AlC1-x

Published online by Cambridge University Press:  16 March 2011

Hideki Hosoda
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-27, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
Tomonari Inamura
Affiliation:
Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-27, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.
Get access

Abstract

In order to clarify the phase stability of E21-type intermetallic carbides, the maximum solid solubility of carbon in Ni3AlC1-x was evaluated by taking into account the strain energy and the chemical energy for the formation of the Ni6C cluster (EM6C). It was found that the maximum carbon content calculated was 0 at.%C at EM6C≥0, 3.5 at.%C at EM6C = -5 kJ/mol, 6.5 at.%C at EM6C = -10 kJ/mol, 10 at.%C at EM6C = -15 kJ/mol and 13 at.%C at EM6C = -20 kJ/mol, respectively. Experimentally determined maximum carbon contents in Ni3Al in the literature can be explained when EM6C is ranged from -5 to -15 kJ/mol, and the solid solubility is found to be sensitive to EM6C. The attractive interaction between Ni and C seems to be due to covalent bonding. Similar attractive chemical interaction between transition metals and carbon must stabilize E21 phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mehrer, H., Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, (Springer Series in Solid State Science 155, Springer-Verlag, Berlin and Heidelberg, 2007) pp. 341369.Google Scholar
2. Kear, B. H. and Wilsdorf, H. G. F., Trans. AIME 224, 382 (1962).Google Scholar
3. Massalski, T. B., Murray, J. L., Bennett, L. H. and Baker, H. (eds), Binary Alloy Phase Diagrams (ASM, Metal Park, OH, 1986).Google Scholar
4. Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R. and Ishida, K., Science, 312 (5770), 90 (2006).Google Scholar
5. Hosoda, H., Takahashi, M., Suzuki, T. and Mishima, Y., in High-Temperature Ordered Intermetallic Alloys V, edited by Baker, I., Darolia, R., Whittenberger, J. D. and Yoo, M. H., (Mater. Res. Soc. Symp. Proc. 288, Pittsburgh, PA, 1992) pp. 793798.Google Scholar
6. Hosoda, H., Suzuki, K. and Hanada, S., in High-Temperature Ordered Intermetallics Alloys VIII, edited by George, E. P., Mills, M. and Yamaguchi, M., (Mater. Res. Soc. Symp. Proc. 522, Pittsburgh, PA, 1999) pp.KK.8.31.16.Google Scholar
7. Suzuki, K., Hosoda, H. and Hanada, S., in High-Temperature Ordered Intermetallics Alloys VIII, edited by. George, E. P., Mills, M. and Yamaguchi, M., (Mater. Res. Soc. Symp. Proc. 522, Pittsburgh, PA, 1999) pp.KK.8.32.16.Google Scholar
8. Hosoda, H., Miyazaki, S. and Mishima, Y., J. Phase Equilibria 22, 394 (2001).Google Scholar
9. Hosoda, H., Inamura, T. and Wakashima, K., in Advanced Intermetallic-Based Alloys, edited by Wiezorek, J., Fu, C.L., Takeyama, M., Morris, D. and Clemens, H., (Mat. Res. Soc. Symp. Proc., 980, Pittsburg, PA, 2007) pp. 395400.Google Scholar
10. Stadelmaier, H. H., in Developments in the Structural Chemistry of Alloy Phases, ed. by Giessen, B. C., 141, (Plenum Press, NY, 1969) pp. 141180.Google Scholar
11. Ohtani, H., Yamamoto, M. and Hasebe, M., CALPHAD 28, 177 (2004).Google Scholar
12. dos Santos, A. V., Solid State Comm. (2010) doi: 10.1016/j.ssc.2010.08.035 Google Scholar
13. Raghavan, V., JPEDAV 27, 488 (2006).Google Scholar
14. Nissen, A. K., Miedema, A. R., de Boer, F. R. and Boom, R., Physica B 152, 303 (1988).Google Scholar
15. Prikhodko, S. V., Carnes, J. D., Isaak, D. G., Yang, H. and Ardell, A. J., Metall. Mater. Trans. A, 30A, 2403 (1999).Google Scholar
16. Hosoda, H., Sato, T., Tezuka, Y., Mishima, Y. and Suzuki, T., J. Jpn Inst. Met. 58, 675 (1994).Google Scholar
17. Portnoi, V. K., Leonov, A. V., Fadeeva, V. I. and Fedotov, S. A., Bull. Russian Accad. Science: Physics 71, 1693 (2007).Google Scholar
18. Han, K. H. and Choo, W. K., Scripta Metall. 17, 281 (1983).Google Scholar
19. Palm, M. and Inden, G., Intermetallics, 3, 443 (1995).Google Scholar
20. Kriviroutchko, K., Kulik, T., Matyja, H., Portnoy, V. K. and Fadeeva, V. I., J. Alloy Comp. 308, 230 (2000).Google Scholar
21. Sanders, W. and Sauthoff, G., Intermetallics 5, 361 (1997).Google Scholar