Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-28T04:43:21.574Z Has data issue: false hasContentIssue false

The Evolution of Periodic Step Arrays on Si by Surface Diffusion

Published online by Cambridge University Press:  21 February 2011

Mary E. Keeffe
Affiliation:
Materials Science & Eng., Cornell University, Ithaca NY, 14853.
C. C. Umbach
Affiliation:
Materials Science & Eng., Cornell University, Ithaca NY, 14853.
Jack M. Blakely
Affiliation:
Materials Science & Eng., Cornell University, Ithaca NY, 14853.
Get access

Abstract

Periodic step arrays on Si(001) surfaces have been produced using photolithography, reactive ion etching and vacuum annealing. These have been studied by optical diffraction, low energy electron diffraction(LEED), and scanning tunneling microscopy (STM). The periodically varying step density on these arrays has been examined by STM. For small deviations from (100) along the [110] zone, single atomic steps dominate, while at larger angles biatomic steps are the most common; at intermediate angles the steps are of mixed character and there is some evidence for a range of unstable orientations. Interesting differences in the ratio of the areas of the two types of terrace (2×1) reconstructions are observed for the minima and maxima of the quasi- sinusoidal surfaces; these differences may be due to stresses produced by the step arrays or to differences in the line tensions associated with the two different types of steps on reconstructed Si(001) surfaces. The observations will be compared to the predictions of capillarity theory for isotropie materials. At high temperatures surface diffusion leads to a decay in amplitude of these surface gratings probably by mutual annihilation of atomic steps at the extrema. The overall rate of this process has been followed by monitoring the change in the distribution of intensity in the diffraction pattern from the grating using a He-Ne laser while the sample is annealed in UHV. With some simplifying assumptions, the intensity distribution can be directly related to the grating amplitude. The experiments are being performed for a range of grating spacings (to allow identification of the dominant transport process from scaling laws) and for a range of temperatures. The relationship between the ‘macroscopic’ observations of the shape development and the STM results will be explored.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abbink, H., Broudy, R., and McCarthy, G., J. Appl. Phys. 39, 4673 (1968).Google Scholar
2. Ichikawa, M. and Doi, T., Appl. Phys. Lett. 50, 1141 (1987).Google Scholar
3. Kasper, E., Appl. Phys. A 28, 129 (1982).CrossRefGoogle Scholar
4. Latyshev, A., Aseev, A., Krasilnikov, A., and Stenin, S., Surf. Sci. 221, 24 (1990); 227, 157 (1989).Google Scholar
5. Mo, Y.-W., Kleiner, J., Webb, M., and Lagally, M., Phys. Rev. Lett. 66, 1998 (1991).CrossRefGoogle Scholar
6. Gavrilyuk, Y., Kaganovskii, Y., Lifshits, V., Krystallographia 26, 561 (1981) [Sov. Phys. Crystallogr. 26, 317 (1981)].Google Scholar
7. Sakamoto, K., Miki, K., and Sakamoto, T., Thin Solid Films 183, 229 (1989).CrossRefGoogle Scholar
8. Webb, M., in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M. (Plenum Press, New York, NY, 1990) pp. 113124.Google Scholar
9. Men, F., Packard, W., Webb, M., Phys. Rev. Lett. 61, 2469 (1988).CrossRefGoogle Scholar
10. Blakely, J.M. and Mykura, H., Acta Met. 10, 565 (1962).Google Scholar
11. Maiya, P.S. and Blakely, J.M., Appl. Phys. Lett. 7, 60 (1965).Google Scholar
12. Herring, C., in Phvsics of Powder Metallurgy, edited by Kingston, W.F. (McGraw-Hill, New York, 1951).Google Scholar
13. Mullins, W.W., J. Appl. Phys. 30, 77 (1959).Google Scholar
14. Mullins, W.W., in Metal Surfaces: Structure. Energetics, and Kinetics, edited by Robertson, W.D. and Gjostein, N.A., (American Society for Metals, Metals Park, Ohio, 1963) p. 17.Google Scholar
15. Maiya, P.S. and Blakely, J.M., J. Appl. Phys 28, 698 (1967).CrossRefGoogle Scholar
16. Blakely, J.M. and Schwoebel, R.L., Surf. Sci. 26, 321 (1971).Google Scholar
17. Marchenko, V.I. and Parshin, A.Y., Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 79, 257 (1980).Google Scholar
18. Andreev, A.F. and Kosevich, Y.A., Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 81, 1435 (1981).Google Scholar
19. Jayaprakash, C., Rottman, C. and Saam, W.F., Phys. Rev. B 30, 6549 (1984).Google Scholar
20. Ozdemir, M. and Zangwill, A., Phys. Rev. B 42, 5013 (1990).CrossRefGoogle Scholar
21. Rettori, A. and Villain, J., J. Phys. 49, 257 (1988).Google Scholar
22. Villain, J. and Lançon, F., Comptes Rendus de l'Académie des Sciences, Serie II 309, 647 (1989).Google Scholar
23. Lançon, F. and Villain, J., Phys. Rev. Lett. 64, 293 (1990).Google Scholar
24. Blakely, J.M., Appl. Phys. Lett., 11, 335 (1967).Google Scholar
25. Bonzel, H.P., Preuss, E. and Steffen, B., Applied Physics A 35, 1 (1984).CrossRefGoogle Scholar
26. Limbach, C.C., Keeffe, M.E. and Blakely, J.M., J. Vac. Sci. Technol. B9, 721 (1991).Google Scholar
27. Limbach, C.C., Keeffe, M.E. and Blakely, J.M., J. Vac Sci. Technol. A9, 1014 (1991).Google Scholar
28. Bonzel, H.P. and Giostein, N.A., Appl. Phys. Lett. 10, 258 (1967).Google Scholar
29. Blakely, J.M. and Olson, D.L., J. Appl. Phys. 39, 3476 (1968).CrossRefGoogle Scholar
30. Schlier, R.E. and Farnsworth, H.E., J. Chem. Phys. 30, 917 (1959).Google Scholar
31. Poon, T.W., Yip, S., Ho, P.S. and Abraham, F.F., Phys. Rev. Lett. 65, 2161 (1990).Google Scholar
32. Pehlke, E. and Tersoff, J., Phys. Rev. Lett. 67 465 (1991).Google Scholar
33. Pehlke, E. and Tersoff, J., Phys. Rev. Lett. 67, 1290 (1991).CrossRefGoogle Scholar
34. Bartelt, N.C., Einstein, T.L, Rottman, C., Alerhand, O.L, Berker, N., Joanopoulos, J.D., Vanderbilt, D., Hamer, R.J. and Demuth, J.E., Phys. Rev. Lett. 66, 961 (1991).Google Scholar
35. Hamers, R.J., Tromp, R.M. and Demuth, J.E., Phys. Rev. B34, 1 (1986).Google Scholar
36. Swartzentruber, B.S., Mo, Y.W., Webb, M.B. and Lagally, M.G., J. Vac. Sci. Technol. A7, 2901 (1989).Google Scholar